Skip to main navigation menu Skip to main content Skip to site footer

Articles

Chapulines and Food consumption

OUTER MEMBRANE VESICLE VACCINES: THE FUTURE OF VACCINES?

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2023.27.1193
Submitted
October 11, 2023
Published
September 1, 2023

Abstract

Preventing the spread of disease, whether by viral or bacterial pathogens, involves protecting
billions of people and subsequent factors in the process. Vaccination is undoubtedly the most
effective way to achieve this. Many countries prioritize vaccination campaigns for the public
health well-being of their inhabitants. Vaccine development has been based on 4 main types,
whose response is effective for many diseases; however, some of them have shown to have
limitations for certain clinical conditions. Therefore, the identification of new candidates for
vaccine development has attracted the attention of many research groups. According to the
humoral and cellular immune response induced by a vaccine, its effectiveness against a disease
is measured. Microvesicles (MVs) are nanometer-sized vesicles that are secreted into the extracellular
space, whose contents consist of carbohydrates, proteins, lipids, nucleic acids (DNA
and RNA) and other metabolites. This conformation can be used as a vehicle to transport antigens
and immunogenic molecules directly to target cells. A vaccine for the multidrug-resistant
bacterium Neisseria gonorrhoeae has already been developed using outer membrane vesicles
(OMVs), whose immune response was promising. In this review, we will study the participation of
microvesicles secreted by Gram-positive and Gram-negative bacteria of different isolates, the
pathogenicity processes in which they participate, their usefulness in the transport of immunogenic
molecules and their effectiveness as vaccine components against multidrug-resistant
bacteria.

References

Azze, R. F. O. (2019). A meningococcal B vaccine induces cross-protection against gonorrhea.
Clinical and Experimental Vaccine Research, 8(2), 110–115. https://doi.org/10.7774/
cevr.2019.8.2.110
Bomberger, J. M., Maceachran, D. P., Coutermarsh, B. A., Ye, S., O’Toole, G. A., & Stanton, B.
A. (2009). Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa
outer membrane vesicles. PLoS pathogens, 5(4), e1000382. https://doi.org/10.1371/journal.
ppat.1000382
Chen, H., Zhou, M., Zeng, Y., Lv, Z., Wang, P., & Han, L. (2022, June 16). Recent advances in biomedical
applications of bacterial outer membrane vesicles. Journal of Materials Chemistry B. Royal
Society of Chemistry. https://doi.org/10.1039/d2tb00683a
Durham A. E. (2018). An evaluation of serum gentamicin concentrations and bacterial susceptibility
to gentamicin in equine practice. Journal of veterinary internal medicine, 32(3), 1194–1201.
https://doi.org/10.1111/jvim.15078
Elsevier. (s. f.). Células eucariotas y procariotas: ¿Sabrías distinguirlas? Te damos las claves.
Elsevier Connect. https://www.elsevier.com/es-es/connect/medicina/celulas-eucariotas-y-procariotas-
sabrias-distinguirlas-te-damos-las-claves#:~:text=Las%20c%C3%A9lulas%20de%20
los%20animales,griego%20%C2%ABn%C3%BAcleo%20primitivo%C2%BB
European Medicines Agency. (2018). Bexsero (vacuna antimeningocócica del grupo B [ADNr,
componente, adsorbida]). European Medicines Agency. https://www.ema.europa.eu/en/documents/
overview/bexsero-epar-summary-public_es.pdf
Furuyama, N., & Sircili, M. P. (2021). Outer membrane vesicles (OMVs) produced by gram-negative
bacteria: Structure, functions, biogenesis, and vaccine application. BioMed Research International.
Hindawi Limited. https://doi.org/10.1155/2021/1490732
Gao, J., Wang, S., & Wang, Z. (2017). High yield, scalable and remotely drug-loaded neutrophil-
derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials, 135, 62–73.
https://doi.org/10.1016/j.biomaterials.2017.05.003
Gao, W., Fang, R. H., Thamphiwatana, S., Luk, B. T., Li, J., Angsantikul, P., … Zhang, L. (2015). Modulating
antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Letters, 15(2),
1403–1409. https://doi.org/10.1021/nl504798g
González-Melado, F. J., & Di Pietro, M. L. (2020). The vaccine against COVID-19 and institutional
trust. La vacuna frente a la COVID-19 y la confianza institucional. Enfermedades infecciosas
y microbiologia clinica (English ed.), 39(10), 510–515. Advance online publication. https://doi.
org/10.1016/j.eimc.2020.08.001
González-Vázquez, María Cristina, Guerra-Martínez, Álvaro Asaf, Escobedo-Herrera, Betsabé,
& Carabarin Lima, Alejandro. (2022). Microvesículas bacterianas secretadas y su potencial uso
en el desarrollo de vacunas. Alianzas y tendencias BUAP, 7(28), 47–74. https://doi.org/10.5281/
zenodo.7425479
Huang, W., Zhang, Q., Li, W., Chen, Y., Shu, C., Li, Q., … Ma, Y. (2019). Anti-outer membrane vesicle
antibodies increase antibiotic sensitivity of pan-drug-resistant Acinetobacter baumannii.
Frontiers in Microbiology, 10(JUN). https://doi.org/10.3389/fmicb.2019.01379
135
Año 9, No. 27, 2023, pp. 125-137
Jahromi, L. P., & Fuhrmann, G. (2021, June 1). Bacterial extracellular vesicles: Understanding biology
promotes applications as nanopharmaceuticals. Advanced Drug Delivery Reviews. Elsevier
B.V. https://doi.org/10.1016/j.addr.2021.03.012
Jan, A. T. (2017). Outer Membrane Vesicles (OMVs) of gram-negative bacteria: A perspective
update. Frontiers in Microbiology, 8(JUN). https://doi.org/10.3389/fmicb.2017.01053
Kadurugamuwa, J. L., & Beveridge, T. J. (1995). Virulence factors are released from Pseudomonas
aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin:
A novel mechanism of enzyme secretion. Journal of Bacteriology, 177(14), 3998–4008.
https://doi.org/10.1128/jb.177.14.3998-4008.1995
Kim, J. H., Lee, J., Park, J., & Gho, Y. S. (2015, April 1). Gram-negative and Gram-positive bacterial
extracellular vesicles. Seminars in Cell and Developmental Biology. Academic Press. https://doi.
org/10.1016/j.semcdb.2015.02.006
Kim, S. Y., Kim, S. I., Yun, S. H., Shin, M., Lee, Y. C., & Lee, J. C. (2020). Proteins in outer membrane
vesicles produced by burkholderia cepacia are responsible for pro-inflammatory responses in
epithelial cells. Journal of Bacteriology and Virology, 50(4), 227–234. https://doi.org/10.4167/
jbv.2020.50.4.227
Klimentová, J., & Stulík, J. (2015). Methods of isolation and purification of outer membrane vesicles
from gram-negative bacteria. Microbiological Research, 170, 1-9. https://doi.org/10.1016/j.
micres.2014.09.006
Krammer, F. (2020, October 22). SARS-CoV-2 vaccines in development. Nature. Nature Research.
https://doi.org/10.1038/s41586-020-2798-3
Leduc, I., Connolly, K. L., Begum, A., Underwood, K., Darnell, S., Shafer, W. M., Balthazar, J. T., Macintyre,
A. N., Sempowski, G. D., Duncan, J. A., Little, M. B., Rahman, N., Garges, E. C., & Jerse, A.
E. (2020). The serogroup B meningococcal outer membrane vesicle-based vaccine 4CMenB induces
cross-species protection against Neisseria gonorrhoeae. PLoS pathogens, 16(12), e1008602.
https://doi.org/10.1371/journal.ppat.1008602
Longtin, J., Dion, R., Simard, M., Betala Belinga, J. F., Longtin, Y., Lefebvre, B., Labbé, A. C., Deceuninck,
G., & De Wals, P. (2017). Possible Impact of Wide-scale Vaccination Against Serogroup B
Neisseria Meningitidis on Gonorrhea Incidence Rates in One Region of Quebec, Canada. Open
Forum Infectious Diseases, 4(Suppl 1), S734–S735. https://doi.org/10.1093/ofid/ofx180.002
Marchetti, M., Errecalde, J., & Mestorino, N. (2011). Dirección para correspondencia: Resistencia
bacteriana a Los antimicrobianos ocasionada por bombas de Eflujo. Impacto en la Multirresistencia.
AnAlectA Vet, 40(312), 40–53.
Matthias, K. A., Connolly, K. L., Begum, A. A., Jerse, A. E., MacIntyre, A. N., Sempowski, G. D., &
Bash, M. C. (2022). Meningococcal Detoxified Outer Membrane Vesicle Vaccines Enhance Gonococcal
Clearance in a Murine Infection Model. In Journal of Infectious Diseases (Vol. 225, pp.
650–660). Oxford University Press. https://doi.org/10.1093/infdis/jiab450
Meldolesi J. (2018). Exosomes and Ectosomes in Intercellular Communication. Current biology:
CB, 28(8), R435–R444. https://doi.org/10.1016/j.cub.2018.01.059
Milani, G., Lana, T., Bresolin, S., Aveic, S., Pastò, A., Frasson, C., & Te Kronnie, G. (2017). Expression
profiling of circulating microvesicles reveals intercellular transmission of oncogenic
pathways. Molecular Cancer Research, 15(6), 683–695. https://doi.org/10.1158/1541-7786.MCR-
16-0307
136
Año 9, No. 27, 2023, pp. 125-137
Nikaido H. (2009). Multidrug resistance in bacteria. Annual review of biochemistry, 78, 119–146.
https://doi.org/10.1146/annurev.biochem.78.082907.145923
Paniagua R., Nistal M., Sesma P., Álvarez-Uría M., Fraile B., Anadón R. & Sáez F. J. (2007). Biología
Celular 3ra edición. McGRAW-HILL - Interamericana de España, S. A. U. http://librodigital.sangregorio.
edu.ec/librosusgp/18073.pdf
Pérez-Cruz, C., Delgado, L., López-Iglesias, C., & Mercade, E. (2015). Outer-inner membrane vesicles
naturally secreted by gram-negative pathogenic bacteria. PLoS ONE, 10(1). https://doi.
org/10.1371/journal.pone.0116896
Petousis-Harris, H., Paynter, J., Morgan, J., Saxton, P., McArdle, B., Goodyear-Smith, F., & Black,
S. (2017). Effectiveness of a group B outer membrane vesicle meningococcal vaccine against
gonorrhoea in New Zealand: a retrospective case-control study. Lancet (London, England),
390(10102), 1603–1610. https://doi.org/10.1016/S0140-6736(17)31449-6
Pfizer, (s. f.). Understanding Six Types of Vaccine Technologies. https://www.pfizer.com/news/
articles/understanding_six_types_of_vaccine_technologies
Preado J., V. (2001). Conceptos microbiológicos de Streptococcus pneumoniae: Basic microbiological
aspects. Revista Chilena de Infectología, 18. https://doi.org/10.4067/s0716-
10182001000000002
Rodríguez, H. (2022, 3 abril). En 2050 la resistencia a los antibióticos será responsable de 10 millones
de muertes anuales. www.nationalgeographic.com.es. https://www.nationalgeographic.
com.es/ciencia/2050-resistencia-a-antibioticos-sera-responsable-10-millones-muertes-anuales_
18090
Semchenko, E. A., & Seib, K. L. (2022, January 1). Outer membrane vesicle vaccines for Neisseria
gonorrhoeae. Nature Reviews Urology. Nature Research. https://doi.org/10.1038/s41585-021-
00534-5
Shkair, L., Garanina, E. E., Stott, R. J., Foster, T. L., Rizvanov, A. A., & Khaiboullina, S. F. (2021,
February 1). Membrane microvesicles as potential vaccine candidates. International Journal of
Molecular Sciences. MDPI AG. https://doi.org/10.3390/ijms22031142
St. Cyr, S., Barbee, L., Workowski, K. A., Bachmann, L. H., Pham, C., Schlanger, K., … Thorpe, P.
(2020). Update to CDC’s Treatment Guidelines for Gonococcal Infection, 2020. MMWR. Morbidity
and Mortality Weekly Report, 69(50), 1911–1916. https://doi.org/10.15585/mmwr.mm6950a6
Takada, K., Ohno, N., & Yadomae, T. (1994). Binding of lysozyme to lipopolysaccharide suppresses
tumor necrosis factor production in vivo. Infection and immunity, 62(4), 1171–1175. https://
doi.org/10.1128/iai.62.4.1171-1175.1994
Toyofuku, M., Nomura, N., & Eberl, L. (2019, January 1). Types and origins of bacterial membrane
vesicles. Nature Reviews Microbiology. Nature Publishing Group. https://doi.org/10.1038/
s41579-018-0112-2
United Nations. (s. f.). Las muertes por COVID-19 sumarían 15 millones entre 2020 y 2021 | Naciones
Unidas. https://www.un.org/es/desa/las-muertes-por-covid-19-sumar%C3%ADan-15-millones-
entre-2020-y-2021
Wei, S., Jiao, D., & Xing, W. (2022). A rapid method for isolation of bacterial extracellular vesicles
from culture media using epsilon-poly-L–lysine that enables immunological function research.
Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.930510
Wei, S., Li, X., Wang, J., Wang, Y., Zhang, C., Dai, S., … Shan, B. (2022). Outer Membrane Vesicles
Secreted by Helicobacter pylori Transmitting Gastric Pathogenic Virulence Factors. ACS Omega,
7(1), 240–258. https://doi.org/10.1021/acsomega.1c04549
Whelan, J., Kløvstad, H., Haugen, I. L., Robert-Du Ry van Beest Holle, M., & Storsaeter, J. (2016,
June 1). Ecologic study of meningococcal B vaccine and Neisseria gonorrhoeae infection, Norway.
Emerging Infectious Diseases. Centers for Disease Control and Prevention (CDC). https://doi.
org/10.3201/eid2206.151093
Zou, C., Zhang, Y., Liu, H., Wu, Y., & Zhou, X. (2022, May 25). Extracellular Vesicles: Recent Insights
Into the Interaction Between Host and Pathogenic Bacteria. Frontiers in Immunology. Frontiers
Media S.A. https://doi.org/10.3389/fimmu.2022.840550