Tristeza microbiana: implicación de la microbiota intestinal en el desarrollo del Trastorno Depresivo Mayor
DOI:
https://doi.org/10.32399/icuap.rdic.2448-5829.2021.20.609Palabras clave:
Microbioma intestinal, Microbiota intestinal, Eje intestino-cerebro, Trastorno Depresivo Mayor (TDM)Resumen
El Trastorno Depresivo Mayor (TDM) es un desorden mental con alta prevalencia en la población mundial, que se caracteriza por sentimientos de tristeza profunda y otros síntomas inhabilitantes, que pueden derivar incluso en la muerte. Debido al complejo origen de esta enfermedad, la investigación desarrollada en el tema ha sido abordada a partir de varios enfoques. En los últimos años el eje intestino-cerebro ha ganado especial relevancia en el tema ya que la evidencia recopilada hasta el momento indica que una alteración en la composición del microbioma intestinal puede conllevar al desarrollo de esta enfermedad neuropsiquiátrica. El presente trabajo pretende dar una visión general sobre lo que se conoce actualmente en relación al eje intestino-cerebro y el rol que desempeña el microbioma intestinal en el desarrollo del TDM y el tratamiento de esta.
Citas
Algul, S., & Ozcelik, O. (2018). Evaluating the Levels of Nesfatin-1 and Ghrelin Hormones in Patients with Moderate and Severe Major Depressive Disorders. Psychiatry Investigation, 15(2), 214–218. https://doi.org/10.30773/pi.2017.05.24
American Psychiatric Association. (2016). DSM-5: Manual diagnóstico y estadístico de los trastornos mentales. Editorial Médica Panamericana.
Asano Y., Hiramoto T., Nishino R., Aiba Y., Kimura T., Yoshihara K., Koga Y., and Sudo N. (2012). Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol - Gastrointest Liver Physiol, 303, 1288-95. doi: 10.1152/ajpgi.00341.2012
Barandouzi, Z. A., Starkweather, A. R., Henderson, W. A., Gyamfi, A., & Cong, X. S. (2020). Altered Composition of Gut Microbiota in Depression: A Systematic Review. Frontiers in Psychiatry, 11. doi:10.3389/fpsyt.2020.00541
Barrett, E., Ross, R. P., O'Toole, P. W., Fitzgerald, G. F., & Stanton, C. (2012). γ-Aminobutyric acid production by culturable bacteria from the human intestine. Journal of applied microbiology, 113(2), 411–417doi: 10.1111/j.1365-2672.2012.05344.x
Berger, M., Gray, J. A., & Roth, B. L. (2009). The Expanded Biology of Serotonin. Annual Review of Medicine, 60(1), 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802
Berlim, M. T., & Turecki, G. (2007). Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Canadian journal of psychiatry. Revue canadienne de psychiatrie, 52(1), 46–54. https://doi.org/10.1177/070674370705200108
Berthoud, H. R., & Neuhuber, W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Autonomic neuroscience:basic & clinical, 85(1-3), 1–17. https://doi.org/10.1016/S1566-0702(00)00215-0
Bonaz, B., Sinniger, V., Pellissier, S.(2017). The Vagus nerve in the neuro-immune Axis: implications in the pathology of the gastrointestinal tract. Front. Immunol. 8, 1452. https://doi.org/10.3389/fimmu.2017.01452.
Bouter, K. E., van Raalte, D. H., Groen, A. K., & Nieuwdorp, M. (2017). Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology, 152(7), 1671–1678. https://doi.org/10.1053/j.gastro.2016.12.048
Caspani, G., Kennedy, S., Foster, J. A., & Swann, J. (2019). Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microbial Cell, 6(10), 454–481. doi:10.15698/mic2019.10.693
Clemente, J. C., Manasson, J., & Scher, J. U. (2018). The role of the gut microbiome in systemic inflammatory disease. BMJ, 360. doi: 10.1136/bmj.j5145
Corfield, E. C., Yang, Y., Martin, N. G., & Nyholt, D. R. (2017). A continuum of genetic liability for minor and major depression. Translational psychiatry, 7(5), e1131.doi: 10.1038/tp.2017.99
Dinan, T.G., Cryan, J.F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37, 1369– 1378. doi: 10.1016/j.psyneuen.2012.03.007
Dinan, T.G., Cryan, J.F. (2017). Brain-Gut-Microbiota axis and mental health. Psychosom. Med. 79, 920–926.. doi: 10.1097/PSY.0000000000000519.
Flux, M. C., & Lowry, C. A. (2020). Finding intestinal fortitude: Integrating the microbiome into a holistic view of depression mechanisms, treatment, and resilience. Neurobiology of Disease, 135, 104578. doi: 10.1016/j.nbd.2019.104578
Fontana, A., Manchia, M., Panebianco, C., Paribello, P., Arzedi, C., Cossu, E., Garzilli, M., Montis, M. A., Mura, A., Pisanu, C., Congiu, D., Copetti, M., Pinna, F., Carpiniello, B., Squassina, A., & Pazienza, V. (2020). Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants. Biomedicines, 8(9), 311.doi: 10.3390/biomedicines8090311
Forsythe, P., Sudo, N., Dinan, T., Taylor, V.H., Bienenstock, J., 2010. Mood and gut feelings. Brain, behavior, and immunity, 24(1), 9–16.doi: 10.1016/j.bbi.2009.05.058
Foster, J. A., & McVey Neufeld, K.-A. (2013). Gut–brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305–312.doi: 10.1016/j.tins.2013.01.005
Fukumoto, S., Tatewaki, M., Yamada, T., Fujimiya, M., Mantyh, C., Voss, M., Eubanks, S., Harris, M., Pappas, T. N., & Takahashi, T. (2003). Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284(5), 1269–1276. https://doi.org/10.1152/ajpregu.00442.2002
Guo, M., Huang, T. Y., Garza, J. C., Chua, S. C., & Lu, X. Y. (2013). Selective deletion of leptin receptors in adult hippocampus induces depression-related behaviours. The international journal of neuropsychopharmacology, 16(4), 857–867. https://doi.org/10.1017/S1461145712000703
Horne, R., & Foster, J. A. (2018). Metabolic and Microbiota Measures as Peripheral Biomarkers in Major Depressive Disorder. Frontiers in psychiatry, 9, 513. https://doi.org/10.3389/fpsyt.2018.00513
Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/nature11234
Hyland NP, and Cryan JF (2010). A gut feeling about GABA: Focus on GABAB receptors. Front Pharmacol 1(124). doi: 10.3389/fphar.2010.00124 37.
Liang, S., Wu, X., Hu, X., Wang, T., & Jin, F. (2018). Recognizing Depression from the Microbiota–Gut–Brain Axis. International Journal of Molecular Sciences, 19(6), 1592. doi: 10.3390/ijms19061592
Lim, G. Y., Tam, W. W., Lu, Y., Ho, C. S., Zhang, M. W., & Ho, R. C. (2018). Prevalence of Depression in the Community from 30 Countries between 1994 and 2014. Scientific Reports, 8(1), 2861. https://doi.org/10.1038/s41598-018-21243-x
Łoniewski, I., Misera, A., Skonieczna-Żydecka, K., Kaczmarczyk, M., Kaźmierczak-Siedlecka, K., Misiak, B., Marlicz, W., & Samochowiec, J. (2020). Major Depressive Disorder and gut microbiota – Association not causation. A scoping review. Progress in Neuro-Psychopharmacology and Biological Psychiatry. doi:10.1016/j.pnpbp.2020.110111
Lu, Y., Fan, C., Li, P., Lu, Y., Chang, X., & Qi, K. (2016). Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Scientific Reports, 6(1). doi: 10.1038/srep37589
Lukić, I., Getselter, D., Ziv, O., Oron, O., Reuveni, E., Koren, O., & Elliott, E. (2019). Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Translational Psychiatry, 9(1).doi: 10.1038/s41398-019-0466-x
Lyte M. (2014). Microbial endocrinology and the microbiota-gut-brain axis. Advances in experimental medicine and biology, 817, 3–24. doi: 10.1007/978-1-4939-0897-4_1
Manchia, M., Pisanu, C., Squassina, A., & Carpiniello, B. (2020). Challenges and Future Prospects of Precision Medicine in Psychiatry. Pharmacogenomics and Personalized Medicine, 13, 127–140. doi: 10.2147/pgpm.s198225
Matsumoto, M., Kibe, R., Ooga, T., Aiba, Y., Sawaki, E., Koga, Y., & Benno, Y. (2013). Cerebral Low-Molecular Metabolites Influenced by Intestinal Microbiota: A Pilot Study. Frontiers in Systems Neuroscience, 7. doi: 10.3389/fnsys.2013.00009
Naveed, M., Zhou, Q.-G., Xu, C., Taleb, A., Meng, F., Ahmed, B., Zhang, Y., Fukunaga, K., & Han, F. (2021). Gut-brain axis: A matter of concern in neuropsychiatric disorders…! Progress in Neuro-Psychopharmacology and Biological Psychiatry, 104, 110051. doi: 10.1016/j.pnpbp.2020.110051
Ozsoy, S., Besirli, A., Abdulrezzak, U., & Basturk, M. (2014). Serum ghrelin and leptin levels in patients with depression and the effects of treatment. Psychiatry investigation, 11(2), 167–172. doi: 10.4306/pi.2014.11.2.167
O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 277, 32–48. doi:10.1016/j.bbr.2014.07.027
Queipo-Ortuño, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero, J. M., Cardona, F., Casanueva, F., & Tinahones, F. J. (2013). Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PloS one, 8(5), e65465. doi: 10.1371/journal.pone.0065465
Reigstad, C. S., Salmonson, C. E., Rainey, J. F., Szurszewski, J. H., Linden, D. R., Sonnenburg, J. L., … Kashyap, P. C. (2015). Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. The FASEB Journal, 29(4), 1395–1403. doi:10.1096/fj.14-259598
Ricken, R., Bopp, S., Schlattmann, P., Himmerich, H., Bschor, T., Richter, C., Elstner, S., Stamm, T. J., Schulz-Ratei, B., Lingesleben, A., Reischies, F. M., Sterzer, P., Borgwardt, S., Bauer, M., Heinz, A., Hellweg, R., Lang, U. E., & Adli, M. (2017). Ghrelin Serum Concentrations Are Associated with Treatment Response During Lithium Augmentation of Antidepressants. The international journal of neuropsychopharmacology, 20(9), 692–697. doi: 10.1093/ijnp/pyw082
Sharon, G., Garg, N., Debelius, J., Knight, R., Dorrestein, P. C., & Mazmanian, S. K. (2014). Specialized Metabolites from the Microbiome in Health and Disease. Cell Metabolism, 20(5), 719–730. doi:10.1016/j.cmet.2014.10.016
Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The Central Nervous System and the Gut Microbiome. Cell, 167(4), 915–932.doi: 10.1016/j.cell.2016.10.027
Sherwin E., Rea K., Dinan T. G., Cryan J. F. (2016). A gut (microbiome) feeling about the brain. Curr. Opin. Gastroenterol. 32 96–102. doi: 10.1097/mog.0000000000000244
Shishov V. A., Kirovskaya T. A., Kudrin V. S., and Oleskin A. V. (2009). Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl Biochem Microbiol 45(5): 494-497. doi: 10.1134/s0003683809050068.
Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health and in disease. Current opinion in gastroenterology, 31(1), 69–75. doi: 10.1097/MOG.000000000000013
Siopi, E., Chevalier, G., Katsimpardi, L., Saha, S., Bigot, M., Moigneu, C., Eberl, G., & Lledo, P.M. (2020). Changes in Gut Microbiota by Chronic Stress Impair the Efficacy of Fluoxetine. Cell Reports, 30(11), 3682-3690.e6. doi: 10.1016/j.celrep.2020.02.099
Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, and Gobbetti M (2007). Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73(22):7283-90. doi: 10.1128/AEM.01064-07
Skonieczna-Żydecka, K., Marlicz, W., Misera, A., Koulaouzidis, A., Łoniewski, I., (2018). Microbiome-the missing link in the gut-brain Axis: focus on its role in gastrointestinal and mental health. J. Clin. Med. 7. doi: 10.3390/jcm7120521.
Souery, D., & Pitchot, W. (2013). Definitions and Predictors of Treatment-resistant Depression. En S. Kasper & S. Montgomery, Treatment-resistant Depression (pp. 1–20). John Wiley & Sons. doi:
1002/9781118556719.ch1
Stanaszek PM, Snell JF, and O’Neill JJ (1977). Isolation, extraction, and measurement of acetylcholine from Lactobacillus plantarum. Appl Environ Microbiol 34(2):237-9. PMID: 907345
Tremaroli, V., & Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242–249.doi: 10.1038/nature11552
Tsavkelova E, Botvinko I, Kudrin V, and Oleskin A (2000). Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl Biochem 372(1–6): 115–7. PMID: 10935181 n
Wada, N. (2016). Leptin. Handbook of Hormones, 306–e34A–4. doi: 10.1016/b978-0-12-801028-0.00191-4
Wang, H. X., & Wang, Y. P. (2016). Gut Microbiota-brain Axis. Chinese medical journal, 129(19), 2373–2380.doi: 10.4103/0366-6999.190667
Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, and Siuzdak G (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci 106(10): 3698–3703. doi: 10.1073/pnas.0812874106
Winter, G., Hart, R. A., Charlesworth, R. P. G., & Sharpley, C. F. (2018). Gut microbiome and depression: What we know and what we need to know. Reviews in the Neurosciences, 29(6), 629–643. doi: 10.1515/revneuro-2017-0072
Woods, A. G., Wormwood, K. L., Iosifescu, D. V., Murrough, J., & Darie, C. C. (2019). Protein Biomarkers in Major Depressive Disorder: An Update. Advances in experimental medicine and biology, 1140, 585–600. /doi: 10.1007/978-3-030-15950-4_35
Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., … Hsiao, E. Y. (2015). Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell, 161(2), 264–276. doi:10.1016/j.cell.2015.02.047
Zaibi, M. S., Stocker, C. J., O'Dowd, J., Davies, A., Bellahcene, M., Cawthorne, M. A., Brown, A. J., Smith, D. M., & Arch, J. R. (2010). Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS letters, 584(11), 2381–2386. doi: 10.1073/pnas.1016088108
Zarouna, S., Wozniak, G., & Papachristou, A. I. (2015). Mood disorders: A potential link between ghrelin and leptin on human body?. World journal of experimental medicine, 5(2), 103–109. doi: 10.5493/wjem.v5.i2.103
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Definir aviso de derechos.
Los datos de este artículo, así como los detalles técnicos para la realización del experimento, se pueden compartir a solicitud directa con el autor de correspondencia.
Los datos personales facilitados por los autores a RD-ICUAP se usarán exclusivamente para los fines declarados por la misma, no estando disponibles para ningún otro propósito ni proporcionados a terceros.