El ocaso de los antibióticos

Una revisión bibliográfica contemporánea de superbacterias

Autores/as

DOI:

https://doi.org/10.32399/icuap.rdic.2448-5829.2021.20.597

Palabras clave:

superbacterias, origen, resistencia, antibióticos, tratamientos

Resumen

Los antibióticos han sido unas herramientas sumamente útiles a lo largo de décadas para combatir enfermedades causadas por bacterias, sin embargo, estas han logrado generar mecanismos de defensa bastante efectivos contra los antibióticos, volviéndolos cada vez más ineficaces medicamente, por lo cual en los últimos años se ha vuelto cada vez más común el termino informal superbacterias para definir a todas las bacterias que se engloban dentro de las características mencionadas, ya sea en mayor o menor medida. La CDC cuenta con una lista de los microorganismos que son de mayor preocupación mundial dividida en 4 partes dependiendo de cuan grave es la situación con cada bacteria basándose en los niveles de urgencia que cada uno de ellos representa a nivel salud, así como la potencial amenaza que estos pudieran representar. La generación de la resistencia a los antibióticos es uno de los mayores retos a los cuales se enfrentará la humanidad durante los próximos años. Se hará una revisión de lo que son las Superbacterias, como surgieron, mecanismos de defensa, donde se encuentran y algunos métodos para combatirlas, ya sea por medio de antibióticos comerciales recientes o por ciertos tratamientos que son innovadores al ser distintos a los antibióticos comunes.

Biografía del autor/a

Miguel A. Dávalos Navarro, Benemérita Universidad Autónoma de Puebla

Licenciatura en Biotecnología, Facultad de Ciencias Biológicas

Osvaldo U. Escobar Cuatetl, Benemérita Universidad Autónoma de Puebla

Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, Benemérita

Elizabeth A. Rojas Sánchez, Benemérita Universidad Autónoma de Puebla

Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, Benemérita

Citas

Acar, J., & Röstel, B. (2001). Antimicrobial resistance: an overview. In Revue scientifique et technique (International Office of Epizootics) (Vol. 20, Issue 3). https://doi.org/10.20506/rst.20.3.1309

Aliberti, S., Cook, G. S., Babu, B. L., Reyes, L. F., H. Rodriguez, A., Sanz, F., Soni, N. J., Anzueto, A., Faverio, P., Sadud, R. F., Muhammad, I., Prat, C., Vendrell, E., Neves, J., Kaimakamis, E., Feneley, A., Swarnakar, R., Franzetti, F., Carugati, M., … Restrepo, M. I. (2019). International prevalence and risk factors evaluation for drug-resistant Streptococcus pneumoniae pneumonia. Journal of Infection, 79(4), pp. 300-311. https://doi.org/https://doi.org/10.1016/j.jinf.2019.07.004

Austin, M., Mellow, M., & Tierney, W. M. (2014). Fecal Microbiota Transplantation in the Treatment of Clostridium difficile Infections. The American Journal of Medicine, 127(6), pp. 479-483. https://doi.org/https://doi.org/10.1016/j.amjmed.2014.02.017

Blokesch, M. (2016). Natural competence for transformation. In Current Biology (Vol. 26, Issue 21). https://doi.org/10.1016/j.cub.2016.08.058

Borody, T. J., & Campbell, J. (2012). Fecal Microbiota Transplantation: Techniques, Applications, and Issues. Gastroenterology Clinics, 41(4), pp. 781-803. https://doi.org/10.1016/j.gtc.2012.08.008

Buhl, M., Kästle, C., Geyer, A., Autenrieth, I. B., Peter, S., & Willmann, M. (2019). Molecular Evolution of Extensively Drug-Resistant (XDR) Pseudomonas aeruginosa Strains From Patients and Hospital Environment in a Prolonged Outbreak . In Frontiers in Microbiology (Vol. 10, p. 1742). https://www.frontiersin.org/article/10.3389/fmicb.2019.01742

Carattoli, A. (2013). Plasmids and the spread of resistance. In International Journal of Medical Microbiology (Vol. 303, Issues 6-7). https://doi.org/10.1016/j.ijmm.2013.02.001

Carroll, L. M., Wiedmann, M., den Bakker, H., Siler, J., Warchocki, S., Kent, D., Lyalina, S., Davis, M., Sischo, W., Besser, T., Warnick, L. D., & Pereira, R. V. (2017). Whole-Genome Sequencing of Drug-Resistant <span class="named-content genus-species" id="named-content-1">Salmonella enterica</span> Isolates from Dairy Cattle and Humans in New York and Washington States Reveals Source and . Applied and Environmental Microbiology, 83(12), e00140-17. https://doi.org/10.1128/AEM.00140-17

CDC. (2019). Antibiotic resistance threats in the United States, 2019. https://doi.org/10.15620/cdc:82532

Christie, P. J. (2015). Classic spotlight: The awesome power of conjugation. In Journal of Bacteriology (Vol. 198, Issue 3). https://doi.org/10.1128/JB.00955-15

Cox, G., & Wright, G. D. (2013). Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. In International Journal of Medical Microbiology (Vol. 303, Issues 6-7). https://doi.org/10.1016/j.ijmm.2013.02.009

Domínguez, N. (2020). Bacteriófagos. Revista de la Facultad de Medicina Humana, 20(1), pp. 164-165. https://doi.org/10.25176/rfmh.v20i1.2554

Fabre, A., Oleastro, M., Nunes, A., Santos, A., Ducournau, A., Floch, P., & Lehours, P. (2018). crossm Whole-Genome Sequence Analysis of Multidrug-Resistant Campylobacter Isolates : a Focus on Aminoglycoside Resistance. 56(9), pp. 1-12.

García-Fernández, E., Koch, G., Wagner, R. M., Fekete, A., Stengel, S. T., Schneider, J., Mielich-Süss, B., Geibel, S., Markert, S. M., Stigloher, C., & Lopez, D. (2017). Membrane Microdomain Disassembly Inhibits MRSA Antibiotic Resistance. Cell, 171(6), 1354-1367.e20. https://doi.org/10.1016/j.cell.2017.10.012

Gonzalez-Villoria, A. M., & Valverde-Garduno, V. (2016). Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen. Journal of Pathogens, 2016, pp. 1-10. https://doi.org/10.1155/2016/7318075

Gupta, P. D., & Birdi, T. J. (2017). Development of botanicals to combat antibiotic resistance. In Journal of Ayurveda and Integrative Medicine (Vol. 8, Issue 4). https://doi.org/10.1016/j.jaim.2017.05.004

Gupta, P., & Deka, S. (2018). The menace of antimicrobial resistance. Indian Journal of Community Health, 30(4), pp. 317–322. https://www.iapsmupuk.org/journal/index.php/IJCH/article/view/1013

Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. In The Lancet (Vol. 387, Issue 10014). https://doi.org/10.1016/S0140-6736(15)00473-0

Kourtis, A. P., Hatfield, K., Baggs, J., Mu, Y., See, I., Epson, E., Nadle, J., Kainer, M. A., Dumyati, G., Petit, S., Ray, S. M., group, E. I. P. M. author, Ham, D., Capers, C., Ewing, H., Coffin, N., McDonald, L. C., Jernigan, J., & Cardo, D. (2019). Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections - United States. MMWR. Morbidity and Mortality Weekly Report, 68(9), pp. 214–219. https://doi.org/10.15585/mmwr.mm6809e1

Lerminiaux, N. A., & Cameron, A. D. S. (2019). Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, 65(1). https://doi.org/10.1139/cjm-2018-0275

Levitus, M., Rewane, A., & Perera, T. B. (2020). Vancomycin-Resistant Enterococci. https://www.ncbi.nlm.nih.gov/books/NBK513233/

Logan, L. K., & Weinstein, R. A. (2017). The Epidemiology of Carbapenem-Resistant Enterobacteriaceae : The Impact and Evolution of a Global Menace. 215 (Suppl 1), 1–9. https://doi.org/10.1093/infdis/jiw282

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3). https://doi.org/10.1111/j.1469-0691.2011.03570.x

Martinez, J. L., & Baquero, F. (2000). Mutation frequencies and antibiotic resistance. In Antimicrobial Agents and Chemotherapy (Vol. 44, Issue 7). https://doi.org/10.1128/AAC.44.7.1771-1777.2000

Martinez, Jose L. (2014). General principles of antibiotic resistance in bacteria. In Drug Discovery Today: Technologies (Vol. 11, Issue 1). https://doi.org/10.1016/j.ddtec.2014.02.001

McKendry, R. A. (2012). Nanomechanics of superbugs and superdrugs: New frontiers in nanomedicine. Biochemical Society Transactions, 40(4), pp. 603-608. https://doi.org/10.1042/BST20120082

Medalla, F., Gu, W., Mahon, B. E., Judd, M., Folster, J., Griffin, P. M., & Hoekstra, R. M. (2016). Estimated Incidence of Antimicrobial Drug-Resistant Nontyphoidal Salmonella Infections, United States, 2004-2012. Emerging Infectious Diseases, 23(1), pp. 29-37. https://doi.org/10.3201/eid2301.160771

Nadeem, S. F., Gohar, U. F., Tahir, S. F., Mukhtar, H., Pornpukdeewattana, S., Nukthamna, P., Moula Ali, A. M., Bavisetty, S. C. B., & Massa, S. (2020). Antimicrobial resistance: more than 70 years of war between humans and bacteria. In Critical Reviews in Microbiology (Vol. 46, Issue 5). https://doi.org/10.1080/1040841X.2020.1813687

Parkinson, J. S. (2016). Classic spotlight: The discovery of bacterial transduction. In Journal of Bacteriology (Vol. 198, Issue 21). https://doi.org/10.1128/JB.00635-16

Patel, R. (2005). Biofilms and antimicrobial resistance. Clinical Orthopaedics and Related Research, 437. https://doi.org/10.1097/01.blo.0000175714.68624.74

Puzari, M., Sharma, M., & Chetia, P. (2018). Emergence of antibiotic resistant Shigella species: A matter of concern. Journal of Infection and Public Health, 11(4), pp. 451-454. https://doi.org/https://doi.org/10.1016/j.jiph.2017.09.025

Rappuoli, R., Bloom, D. E., & Black, S. (2017). Deploy vaccines to fight superbugs. Nature, 552(7684), pp. 165-167. https://doi.org/10.1038/d41586-017-08323-0

Rodríguez, H. (2020). Virus de diseño, los nuevos aliados contra las superbacterias. https://www.nationalgeographic.com.es/ciencia/virus-diseno-nuevos-aliados-batalla-contra-superbacterias_14770

Shriram, V., Khare, T., Bhagwat, R., Shukla, R., & Kumar, V. (2018). Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Frontiers in Microbiology, 9(DEC). https://doi.org/10.3389/fmicb.2018.02990

Son, S. K., Lee, N. R., Ko, J., Choi, J. K., Moon, S., Joo, E. J., & Peck, K. R. (2018). Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia : a systematic review and meta-analysis. May, pp. 2631-2642. https://doi.org/10.1093/jac/dky168

Suay-García, B., & Pérez-Gracia, M. T. (2018). Future prospects for neisseria gonorrhoeae treatment. Antibiotics, 7(2). https://doi.org/10.3390/antibiotics7020049

Sun, D. (2018). Pull in and push out: Mechanisms of horizontal gene transfer in bacteria. Frontiers in Microbiology, 9(SEP). https://doi.org/10.3389/fmicb.2018.02154

Sweeney, M. T., Lubbers, B. V., Schwarz, S., & Watts, J. L. (2018). Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. Journal of Antimicrobial Chemotherapy, 73(6). https://doi.org/10.1093/jac/dky043

Tiberi, S., Zumla, A., & Migliori, G. B. (2019). Multidrug and Extensively Drug-resistant Tuberculosis: Epidemiology, Clinical Features, Management and Treatment. Infectious Disease Clinics, 33(4), pp. 1063-1085. https://doi.org/10.1016/j.idc.2019.09.002

Zhu, D., Sorg, J. A., & Sun, X. (2018). Clostridioides difficile biology: Sporulation, germination, and corresponding therapies for C. difficile infection. Frontiers in Cellular and Infection Microbiology, 8(FEB), pp. 1-10. https://doi.org/10.3389/fcimb.2018.00029

Descargas

Publicado

2021-05-15

Cómo citar

Dávalos Navarro, M. A., Escobar Cuatetl, O. U., & Rojas Sánchez, E. A. (2021). El ocaso de los antibióticos: Una revisión bibliográfica contemporánea de superbacterias. RD-ICUAP, 7(20), 28–49. https://doi.org/10.32399/icuap.rdic.2448-5829.2021.20.597

Número

Sección

Artículos