EL ESTRÉS Y SU RELACIÓN CON ALGUNAS PATOLOGÍAS ASOCIADAS A LA REPRODUCCIÓN FEMENINA
DOI:
https://doi.org/10.32399/icuap.rdic.2448-5829.2024.Especial.1336Palabras clave:
Estrés, ovario, reproducción, cortisol, desórdenes reproductivosResumen
El estrés es uno de los factores debilitantes más comunes en la actualidad. Es conocido que el sistema dé respuesta al estrés causa modificaciones bioquímicas en la homeostasis del organismo, alterando la comunicación de distintas áreas del sistema nervioso central, como el hipotálamo, con el sistema nervioso periférico. El estrés promueve agotamiento, fatiga, tensión laboral, desequilibrio emocional y condiciones psicosociales adversas, pudiendo desencadenar patologías que incluyen cambios en el metabolismo como depresión, obesidad, modificaciones en la comunicación nerviosa. Así como variaciones en las concentraciones de distintas hormonas como la GnRH, FSH, LH y hormonas esteroides, las cuales están directamente relacionadas con el funcionamiento de los ovarios y la reproducción. Las fluctuaciones fisiológicas causadas por el estrés provocan cambios en el sistema reproductor femenino, causando alteraciones sobre los ciclos reproductivos, la síntesis de hormonas esteroides y la liberación de ovocitos, así como en la gestación y en el desarrollo del embrión.
Citas
Arenas, M. C., & Puigcerver, A. (2009). Diferencias entre hombres y mujeres en los trastornos de ansiedad: Una aproximación psicobiológica. Escritos de Psicología (Internet), 3(1), 20-29.
Baik, J.-H. (2020). Stress and the dopaminergic reward system. Experimental & Molecular Medicine, 52(12), Article 12. https://doi.org/10.1038/s12276-020-00532-4
Bale, T. L., & Epperson, C. N. (2015). Sex differences and stress across the lifespan. Nature Neuroscience, 18(10), 1413-1420. https://doi.org/10.1038/nn.4112
Beninger, R. J., & Miller, R. (1998). Dopamine D1-like receptors and reward-related incentive learning. Neuroscience and Biobehavioral Reviews, 22(2), 335-345. https://doi.org/10.1016/s0149-7634(97)00019-5
Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42(1), 33-84. https://doi.org/10.1016/S0165-0173(03)00143-7
Biomarkers of preconception stress and the incidence of pregnancy loss | Human Reproduction | Oxford Academic. (s. f.). Recuperado 4 de noviembre de 2022
Bültmann, U., Nielsen, M. B. D., Madsen, I. E. H., Burr, H., & Rugulies, R. (2013). Sleep disturbances and fatigue: Independent predictors of sickness absence? A prospective study among 6538 employees. European Journal of Public Health, 23(1), 123-128. https://doi.org/10.1093/eurpub/ckr207
Carrasco, G. A., & Van de Kar, L. D. (2003). Neuroendocrine pharmacology of stress. European Journal of Pharmacology, 463(1-3), 235-272. https://doi.org/10.1016/s0014-2999(03)01285-8
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 267(9), 1244-1252.
Davis, C. A. (1993). A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films, 226(1), 30-34. https://doi.org/10.1016/0040-6090(93)90201-Y
Dell’Osso, L., Abelli, M., Carpita, B., Pini, S., Castellini, G., Carmassi, C., & Ricca, V. (2016). Historical evolution of the concept of anorexia nervosa and relationships with orthorexia nervosa, autism, and obsessive–compulsive spectrum. Neuropsychiatric Disease and Treatment, 12. https://doi.org/10.2147/NDT.S108912
Demyttenaere, K., Nijs, P., Evers-Kiebooms, G., & Koninckx, P. R. (1992). Coping and the ineffectiveness of coping influence the outcome of in vitro fertilization through stress responses. Psychoneuroendocrinology, 17(6), 655-665. https://doi.org/10.1016/0306-4530(92)90024-2
Dobson, H., Fergani, C., Routly, J. E., & Smith, R. F. (2012). Effects of stress on reproduction in ewes. Animal Reproduction Science, 130(3-4), 135-140. https://doi.org/10.1016/j.anireprosci.2012.01.006
Dobson, H., & Smith, R. F. (2000). What is stress, and how does it affect reproduction? Animal Reproduction Science, 60-61, 743-752. https://doi.org/10.1016/s0378-4320(00)00080-4
Entringer, S., Buss, C., & Wadhwa, P. D. (2012). Prenatal stress, telomere biology, and fetal programming of health and disease risk. Science Signaling, 5(248), pt12. https://doi.org/10.1126/scisignal.2003580
Gómez-Chang, E., Larrea, F., & Martínez-Montes, F. (2012). Vías de señalización asociadas a la esteroidogénesis. TIP Revista Especializada en Ciencias Químico-Biológicas, 15(1), 24-36.
Greiner, M., Paredes, A., Araya, V., & Lara, H. E. (2005). Role of stress and sympathetic innervation in the development of polycystic ovary syndrome. Endocrine, 28(3), 319-324. https://doi.org/10.1385/ENDO:28:3:319
Hatch, M. C., Figa-Talamanca, I., & Salerno, S. (1999). Work stress and menstrual patterns among American and Italian nurses. Scandinavian Journal of Work, Environment & Health, 25(2), 144-150. https://doi.org/10.5271/sjweh.417
Head, J., Kivimäki, M., Siegrist, J., Ferrie, J. E., Vahtera, J., Shipley, M. J., & Marmot, M. G. (2007). Effort-reward imbalance and relational injustice at work predict sickness absence: The Whitehall II study. Journal of Psychosomatic Research, 63(4), 433-440. https://doi.org/10.1016/j.jpsychores.2007.06.021
Hjøllund, N. H., Jensen, T. K., Bonde, J. P., Henriksen, T. B., Andersson, A. M., Kolstad, H. A., Ernst, E., Giwercman, A. J., Skakkebaek, N. E., & Olsen, J. (2000). [Stress and fertility. A follow-up study among couples planning the first pregnancy]. Ugeskrift for Laeger, 162(38), 5081-5086.
Ilie, I. R. (2020). Neurotransmitter, neuropeptide and gut peptide profile in PCOS-pathways contributing to the pathophysiology, food intake and psychiatric manifestations of PCOS. Advances in Clinical Chemistry, 96, 85-135. https://doi.org/10.1016/bs.acc.2019.11.004
Jankord, R., & Herman, J. P. (2008). Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Annals of the New York Academy of Sciences, 1148, 64-73. https://doi.org/10.1196/annals.1410.012
Järvelin-Pasanen, S., Sinikallio, S., & Tarvainen, M. P. (2018). Heart rate variability and occupational stress-systematic review. Industrial Health, 56(6), 500-511. https://doi.org/10.2486/indhealth.2017-0190
Kendler, K. S., Kessler, R. C., Walters, E. E., MacLean, C., Neale, M. C., Heath, A. C., & Eaves, L. J. (1995). Stressful life events, genetic liability, and onset of an episode of major depression in women. The American Journal of Psychiatry, 152(6), 833-842. https://doi.org/10.1176/ajp.152.6.833
Laganà, A. S., La Rosa, V. L., Rapisarda, A. M. C., Valenti, G., Sapia, F., Chiofalo, B., Rossetti, D., Ban Frangež, H., Vrtačnik Bokal, E., & Vitale, S. G. (2017). Anxiety and depression in patients with endometriosis: Impact and management challenges. International Journal of Women’s Health, 9, 323-330. https://doi.org/10.2147/IJWH.S119729
Lagunas, N., Calmarza-Font, I., Diz-Chaves, Y., & Garcia-Segura, L. M. (2010). Long-term ovariectomy enhances anxiety and depressive-like behaviors in mice submitted to chronic unpredictable stress. Hormones and Behavior, 58(5), 786-791. https://doi.org/10.1016/j.yhbeh.2010.07.014
Lakatos, E., Szabó, G., F Szigeti, J., & Balog, P. (2015). [Relationships between psychological well-being, lifestyle factors and fertility]. Orvosi Hetilap, 156(12), 483-492. https://doi.org/10.1556/OH.2015.30104
Liao, B., Qiao, J., & Pang, Y. (2021). Central Regulation of PCOS: Abnormal Neuronal-Reproductive-Metabolic Circuits in PCOS Pathophysiology. Frontiers in Endocrinology, 12. https://www.frontiersin.org/articles/10.3389/fendo.2021.667422
Lindsay, J. R., & Nieman, L. K. (2005). The hypothalamic-pituitary-adrenal axis in pregnancy: Challenges in disease detection and treatment. Endocrine Reviews, 26(6), 775-799. https://doi.org/10.1210/er.2004-0025
Lynch CD, Sundaram R, Buck Louis GM. Biomarkers of preconception stress and the incidence of pregnancy loss. Hum Reprod. 2018 Apr 1;33(4):728-735. doi: 10.1093/humrep/dey030. PMID: 29490045; PMCID: PMC6065502
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews. Neuroscience, 10(6), 434-445. https://doi.org/10.1038/nrn2639
Mahar, I., Bambico, F. R., Mechawar, N., & Nobrega, J. N. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience and Biobehavioral Reviews, 38, 173-192. https://doi.org/10.1016/j.neubiorev.2013.11.009
Mahesh, V. B., & Brann, D. W. (1998). Regulation of the preovulatory gonadotropin surge by endogenous steroids. Steroids, 63(12), 616-629. https://doi.org/10.1016/s0039-128x(98)00075-0
Markopoulos, M. C., Rizos, D., Valsamakis, G., Deligeoroglou, E., Grigoriou, O., Chrousos, G. P., Creatsas, G., & Mastorakos, G. (2011). Hyperandrogenism in women with polycystic ovary syndrome persists after menopause. The Journal of Clinical Endocrinology and Metabolism, 96(3), 623-631. https://doi.org/10.1210/jc.2010-0130
Matud, M. P. (2004). Gender differences in stress and coping styles. Personality and Individual Differences, 37, 1401-1415. https://doi.org/10.1016/j.paid.2004.01.010
Mulder, E. J. H., Robles de Medina, P. G., Huizink, A. C., Van den Bergh, B. R. H., Buitelaar, J. K., & Visser, G. H. A. (2002). Prenatal maternal stress: Effects on pregnancy and the (unborn) child. Early Human Development, 70(1-2), 3-14. https://doi.org/10.1016/s0378-3782(02)00075-0
Musillo, C., Berry, A. & Cirulli, F. (2022). Prenatal psychological or metabolic stress increases the risk for psychiatric disorders: the “funnel effect” model, Neuroscience & Biobehavioral Reviews, Volume 136,104624, ISSN 0149-7634, https://doi.org/10.1016/j.neubiorev.2022.104624.
Nepomnaschy, P. A., Sheiner, E., Mastorakos, G., & Arck, P. C. (2007). Stress, immune function, and women’s reproduction. Annals of the New York Academy of Sciences, 1113, 350-364. https://doi.org/10.1196/annals.1391.028
Norman, R. J., Dewailly, D., Legro, R. S., & Hickey, T. E. (2007). Polycystic ovary syndrome. Lancet (London, England), 370(9588), 685-697. https://doi.org/10.1016/S0140-6736(07)61345-2
Pandey, A. K., Gupta, A., Tiwari, M., Prasad, S., Pandey, A. N., Yadav, P. K., Sharma, A., Sahu, K., Asrafuzzaman, S., Vengayil, D. T., Shrivastav, T. G., & Chaube, S. K. (2018). Impact of stress on female reproductive health disorders: Possible beneficial effects of shatavari (Asparagus racemosus). Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 103, 46-49. https://doi.org/10.1016/j.biopha.2018.04.003
Robbins, T. W., & Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and motivation. Current Opinion in Neurobiology, 6(2), 228-236. https://doi.org/10.1016/s0959-4388(96)80077-8
Seckl, J. R., & Holmes, M. C. (2007). Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal «programming» of adult pathophysiology. Nature Clinical Practice. Endocrinology & Metabolism, 3(6), 479-488. https://doi.org/10.1038/ncpendmet0515
Selye, H. (1950). Stress and the General Adaptation Syndrome. British Medical Journal, 1(4667), 1383-1392.
Shalev, I., Entringer, S., Wadhwa, P. D., Wolkowitz, O. M., Puterman, E., Lin, J., & Epel, E. S. (2013). Stress and telomere biology: A lifespan perspective. Psychoneuroendocrinology, 38(9), 1835-1842. https://doi.org/10.1016/j.psyneuen.2013.03.010
Sharma, V. K., Trakroo, M., Subramaniam, V., Rajajeyakumar, M., Bhavanani, A. B., & Sahai, A. (2013). Effect of fast and slow pranayama on perceived stress and cardiovascular parameters in young health-care students. International Journal of Yoga, 6(2), 104-110. https://doi.org/10.4103/0973-6131.113400
Sorrells, S. F., Caso, J. R., Munhoz, C. D., & Sapolsky, R. M. (2009). The stressed CNS: When glucocorticoids aggravate inflammation. Neuron, 64(1), 33-39. https://doi.org/10.1016/j.neuron.2009.09.032
Thorsen, S. V., Pedersen, J., Flyvholm, M.-A., Kristiansen, J., Rugulies, R., & Bültmann, U. (2019). Perceived stress and sickness absence: A prospective study of 17,795 employees in Denmark. International Archives of Occupational and Environmental Health, 92(6), 821-828. https://doi.org/10.1007/s00420-019-01420-9
Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53(4), 865-871. https://doi.org/10.1016/s0022-3999(02)00429-4
Valsamakis, G., Chrousos, G., & Mastorakos, G. (2019). Stress, female reproduction and pregnancy. Psychoneuroendocrinology, 100, 48-57. https://doi.org/10.1016/j.psyneuen.2018.09.031
Vinik, A. I., Maser, R. E., & Ziegler, D. (2011). Autonomic imbalance: Prophet of doom or scope for hope? Diabetic Medicine, 28(6), 643-651. https://doi.org/10.1111/j.1464-5491.2010.03184.x
Vitaliano, P. P., Russo, J., & Maiuro, R. D. (1987). Locus of control, type of stressor, and appraisal within a cognitive-phenomenological model of stress. Journal of Research in Personality, 21(2), 224-237. https://doi.org/10.1016/0092-6566(87)90009-2
Wagenmaker, E. R., & Moenter, S. M. (2017). Exposure to Acute Psychosocial Stress Disrupts the Luteinizing Hormone Surge Independent of Estrous Cycle Alterations in Female Mice. Endocrinology, 158(8), 2593-2602. https://doi.org/10.1210/en.2017-00341
Yang, L., Zhao, Y., Wang, Y., Liu, L., Zhang, X., Li, B., & Cui, R. (2015). The Effects of Psychological Stress on Depression. Current Neuropharmacology, 13(4), 494-504. https://doi.org/10.2174/1570159X1304150831150507
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Definir aviso de derechos.
Los datos de este artículo, así como los detalles técnicos para la realización del experimento, se pueden compartir a solicitud directa con el autor de correspondencia.
Los datos personales facilitados por los autores a RD-ICUAP se usarán exclusivamente para los fines declarados por la misma, no estando disponibles para ningún otro propósito ni proporcionados a terceros.