Melena de León (Hericium erinaceus): El guardián neuroprotector

Autores/as

DOI:

https://doi.org/10.32399/icuap.rdic.2448-5829.2023.27.1180

Palabras clave:

H. erinaceus, neuroprotector, neurogénesis, funciones cognitivas, enfermedades neurodegenerativas

Resumen

Hericium erinaceus es un hongo comestible usado en la medicina desde la antigüedad. Se destaca por sus principales metabolitos neuroprotectores: las hericenonas y las erinacinas, que estimulan la síntesis del factor de crecimiento nervioso (NGF). Las biomoléculas de este hongo se relacionan con la neurogénesis, las actividades antidepresivas y ansiolíticas, mejorando las funciones cognitivas y ralentizando enfermedades neurodegenerativas; con lo cual, sus aplicaciones y tratamientos terapéuticos son prometedores.

Citas

Aloe, L., Rocco, M. L., Balzamino, B. O., & Micera, A. (2015). Nerve Growth Factor: A Focus on Neuroscience and Therapy. Current neuropharmacology, 13(3), 294–303. https://doi.org/10.2174/1570159x13666150403231920

Apfel, S. C., & Kessler, J. A. (1996). Neurotrophic factors in the treatment of peripheral neuropathy. Ciba Foundation symposium, 196, 98–112. https://doi.org/10.1002/9780470514863.ch8

Chen, C. C., Tzeng, T. T., Chen, C. C., Ni, C. L., Lee, L. Y., Chen, W. P., ... & Shen, C. C. (2016). Erinacine S, a rare sesterterpene from the mycelia of Hericium erinaceus. Journal of natural products, 79(2), 438-441.

Chen, J., Zeng, X., Yang, Y. L., Xing, Y. M., Zhang, Q., Li, J. M., … Guo, S. X. (2017). Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-10376-0

Chong, P., Khairuddin, S., Tse, A., Hiew, L., Lau, C., & Tipoe, G. et al. (2020). Hericium erinaceus potentially rescues behavioural motor deficits through ERK-CREB-PSD95 neuroprotective mechanisms in rat model of 3-acetylpyridine-induced cerebellar ataxia. Scientific Reports, 10(1). doi: 10.1038/s41598-020-71966-z

Deshmukh, Sunil & Sridhar, K. & MK, Gupta. (2021). Hericium erinaceus -A Rich Source of Diverse Bioactive Metabolites. Fungal Biotec. 1. 10-38. 10.5943/FunBiotec/1/2/2.

Diling, C., Chaoqun, Z., Jian, Y., Jian, L., Jiyan, S., Yizhen, X., & Guoxiao, L. (2017). Immunomodulatory Activities of a Fungal Protein Extracted from Hericium erinaceus through Regulating the Gut Microbiota. Frontiers in immunology, 8, 666. https://doi.org/10.3389/fimmu.2017.00666

Edible and Medicinal Mushrooms: Emerging Brain Food for the Mitigation of Neurodegenerative Diseases | Journal of Medicinal Food. (2022). Journal Of Medicinal Food. Retrieved from https://www.liebertpub.com/doi/10.1089/jmf.2016.3740

Gong, M., An, J., Lü, H. Z., Wu, C. F., Li, Y. J., Cheng, J. Q., & Bao, J. K. (2004). Effects of denaturation and amino acid modification on fluorescence spectrum and hemagglutinating activity of Hericium erinaceum Lectin. Acta biochimica et biophysica Sinica, 36(5), 343–350. https://doi.org/10.1093/abbs/36.5.343

Hiraki, E., Furuta, S., Kuwahara, R., Takemoto, N., Nagata, T., Akasaka, T., Shirouchi, B., Sato, M., Ohnuki, K., & Shimizu, K. (2017). Anti-obesity activity of Yamabushitake (Hericium erinaceus) powder in ovariectomized mice, and its potentially active compounds. Journal of natural medicines, 71(3), 482–491. https://doi.org/10.1007/s11418-017-1075-8

Huang, H., Ho, C., Sung, H., Lee, L., Chen, W., & Chen, Y. et al. (2021). Hericium erinaceus mycelium and its small bioactive compounds promote oligodendrocyte maturation with an increase in myelin basic protein. Scientific Reports, 11(1). doi: 10.1038/s41598-021-85972-2

Ibánez, K., Boullosa, C., Tabarés-Seisdedos, R., Baudot, A., & Valencia, A. (2014). Molecular Evidence for the Inverse Comorbidity between Central Nervous.

Kawagishi, H, Ando, M, Shinba, K, Sakamoto, H, Yoshida, S, Ojima, F, Ishiguro, Y, Ukai, N and Furukawa, S. 1993. Chromans, hericenones F, G and H from the mushroom Hericium erinaceum. Phytochemistry, 32: 175–178.

Kawagishi, H., Ando, M., & Mizuno, T. (1990). Hericenone A and B as cytotoxic principles from the mushroom. Tetrahedron Letters, 31(3), 373–376. https://doi.org/10.1016/s0040-4039(00)94558-1

Kawagishi, H., Ando, M., Sakamoto, H., Yoshida, S., Ojima, F., Ishiguro, Y., ... & Furukawa, S. (1991). Hericenones C, D and E, stimulators of nerve growth factor (NGF)-synthesis, from the mushroom Hericium erinaceum. Tetrahedron Letters, 32(35), 4561-4564.

Kawagishi, H., Shimada, A., Hosokawa, S., Mori, H., Sakamoto, H., Ishiguro, Y., ... & Furukawa, S. (1996). Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Letters, 37(41), 7399-7402.

Kawagishi, H., Shimada, A., Shirai, R., Okamoto, K., Ojima, F., Sakamoto, H., ... & Furukawa, S. (1994). Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron letters, 35(10), 1569-1572.

Kawagishi, H., Shimada, A., Shizuki, K., Ojima, F., Mori, H., Okamoto, K., ... & Furukawa, S. (1996). Erinacine D, a stimulator of NGF-synthesis, from the mycelia of Hericium erinaceum. Heterocyclic Communications, 2(1), 51-54.

Kobayashi, S., Tamura, T., Koshishiba, M., Yasumoto, T., Shimizu, S., Kintaka, T., & Nagai, K. (2021). Total synthesis, structure revision, and neuroprotective effect of hericenones C-H and their derivatives. The Journal of Organic Chemistry, 86(3), 2602–2620. https://doi.org/10.1021/acs.joc.0c02681

Kushairi, N., Tarmizi, N. A. K. A., Phan, C. W., Macreadie, I., Sabaratnam, V., Naidu, M., & David, P. (2020). Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer's disease. Trends in Food Science & Technology, 104, 153-162. https://doi.org/10.1016/j.tifs.2020.07.029

Lai PL, Naidu M, Sabaratnam V, Wong KH, David RP, Kuppusamy UR, Abdullah N, Malek SN (2013) Propiedades neurotróficas del hongo medicinal melena de león, Hericium erinaceus (basidiomicetos superiores) de Malasia. Setas Int J Med 15: 539–554

Lee, E. W., Shizuki, K., Hosokawa, S., Suzuki, M., Suganuma, H., Inakuma, T., Li, J., Ohnishi-Kameyama, M., Nagata, T., Furukawa, S., & Kawagish, H. (2000). Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum. Bioscience, biotechnology, and biochemistry, 64(11), 2402–2405. https://doi.org/10.1271/bbb.64.2402

Lee, J. S., Wee, J. W., Lee, H. Y., An, H. S., & Hong, E. K. (2010). Effects of ascorbic acid and uracil on exo-polysaccharide production with Hericium erinaceus in liquid culture. Biotechnology and Bioprocess Engineering: BBE, 15(3), 453–459. https://doi.org/10.1007/s12257-008-0265-3

Lee, K. F., Chen, J. H., Teng, C. C., Shen, C. H., Hsieh, M. C., Lu, C. C., Lee, K. C., Lee, L. Y., Chen, W. P., Chen, C. C., Huang, W. S., & Kuo, H. C. (2014). Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine. International journal of molecular sciences, 15(9), 15073–15089. https://doi.org/10.3390/ijms150915073

Lee, S., Hsu, J., Chen, T., Huang, C., Wu, T., & Chin, T. (2022). Erinacine A Prevents Lipopolysaccharide-Mediated Glial Cell Activation to Protect Dopaminergic Neurons against Inflammatory Factor-Induced Cell Death In Vitro and In Vivo. International Journal Of Molecular Sciences, 23(2), 810. doi: 10.3390/ijms23020810

Li, I. C., Lee, L. Y., Tzeng, T. T., Chen, W. P., Chen, Y. P., Shiao, Y. J., & Chen, C. C. (2018). Neurohealth Properties of Hericium erinaceus Mycelia Enriched with Erinacines. Behavioural neurology, 2018, 5802634. https://doi.org/10.1155/2018/5802634

Li, I., Chang, H., Lin, C., Chen, W., Lu, T., & Lee, L. et al. (2020). Prevention of Early Alzheimer’s Disease by Erinacine A-Enriched Hericium erinaceus Mycelia Pilot Double-Blind Placebo-Controlled Study. Frontiers In Aging Neuroscience, 12. doi: 10.3389/fnagi.2020.00155

Lu, C. C., Huang, W. S., Lee, K. F., Lee, K. C., Hsieh, M. C., Huang, C. Y., ... & Kuo, H. C. (2016). Inhibitory effect of Erinacines A on the growth of DLD-1 colorectal cancer cells is induced by generation of reactive oxygen species and activation of p70S6K and p21. Journal of Functional Foods, 21, 474-484.

Mori, K., Obara, Y., Hirota, M., Azumi, Y., Kinugasa, S., Inatomi, S., & Nakahata, N. (2008). Nerve growth factor-inducing activity of Hericium erinaceus in 1321N1 human astrocytoma cells. Biological & pharmaceutical bulletin, 31(9), 1727–1732. https://doi.org/10.1248/bpb.31.1727

Nagai, K., Chiba, A., Nishino, T., Kubota, T., & Kawagishi, H. (2006). Dilinoleoyl-phosphatidylethanolamine from Hericium erinaceum protects against ER stress-dependent Neuro2a cell death via protein kinase C pathway. The Journal of nutritional biochemistry, 17(8), 525–530. https://doi.org/10.1016/j.jnutbio.2005.09.007
Nagano, M., Shimizu, K., Kondo, R., Hayashi, C., Sato, D., Kitagawa, K., & Ohnuki, K. (2010). Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomedical research (Tokyo, Japan), 31(4), 231–237. https://doi.org/10.2220/biomedres.31.231

Neurodegenerative Diseases. (2022). Retrieved 17 November 2022, from https://www.niehs.nih.gov/research/supported/health/neurodegenerative/index.cfm

Phan, C. W., David, P., & Sabaratnam, V. (2017). Edible and Medicinal Mushrooms: Emerging Brain Food for the Mitigation of Neurodegenerative Diseases. Journal of medicinal food, 20(1), 1–10. https://doi.org/10.1089/jmf.2016.3740

Phan, C. W., David, P., Naidu, M., Wong, K. H., & Sabaratnam, V. (2015). Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Critical reviews in biotechnology, 35(3), 355–368. https://doi.org/10.3109/07388551.2014.887649

Phan, C. W., Lee, G. S., Hong, S. L., Wong, Y. T., Brkljača, R., Urban, S., Abd Malek, S. N., & Sabaratnam, V. (2014). Hericium erinaceus (Bull.: Fr) Pers. cultivated under tropical conditions: isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways. Food & function, 5(12), 3160–3169. https://doi.org/10.1039/c4fo00452c

Rahi, D. K., & Malik, D. (2016). Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. Journal of Mycology, 2016.

Rai, S. N., Mishra, D., Singh, P., Vamanu, E., & Singh, M. P. (2021). Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 137, 111377. https://doi.org/10.1016/j.biopha.2021.111377

Rai, S. N., Mishra, D., Singh, P., Vamanu, E., & Singh, M. P. (2021). Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 137, 111377. https://doi.org/10.1016/j.biopha.2021.111377

Ratto, D., Corana, F., Mannucci, B., Priori, E. C., Cobelli, F., Roda, E., Ferrari, B., et al. (2019). Hericium erinaceus Improves Recognition Memory and Induces Hippocampal and Cerebellar Neurogenesis in Frail Mice during Aging. Nutrients, 11(4), 715. MDPI AG. Retrieved from http://dx.doi.org/10.3390/nu11040715

Roda, E., Priori, E., Ratto, D., De Luca, F., Di Iorio, C., & Angelone, P. et al. (2021). Neuroprotective Metabolites of Hericium erinaceus Promote Neuro-Healthy Aging. International Journal Of Molecular Sciences, 22(12), 6379. doi: 10.3390/ijms22126379

Sabaratnam, V., Kah-Hui, W., Naidu, M., & Rosie David, P. (2013). Neuronal health - can culinary and medicinal mushrooms help?. Journal of traditional and complementary medicine, 3(1), 62–68. https://doi.org/10.4103/2225-4110.106549

Saito, T., Aoki, F., HIRAI, H., Inagaki, T., Matsunaga, Y., Sakakibara, T., ... & Kojima, N. (1998). Erinacine E as a kappa opioid receptor agonist and its new analogs from a basidiomycete, Hericium ramosum. The Journal of antibiotics, 51(11), 983-990.

Shimbo, M., Kawagishi, H., & Yokogoshi, H. (2005). Erinacine A increases catecholamine and nerve growth factor content in the central nervous system of rats. Nutrition research, 25(6), 617-623.

Singh, S. S., Rai, S. N., Birla, H., Zahra, W., Rathore, A. S., & Singh, S. P. (2020). NF-κB-Mediated Neuroinflammation in Parkinson's Disease and Potential Therapeutic Effect of Polyphenols. Neurotoxicity research, 37(3), 491–507. https://doi.org/10.1007/s12640-019-00147-2
Thongbai, B., Rapior, S., Hyde, K. D., Wittstein, K., & Stadler, M. (2015). Hericium erinaceus, an amazing medicinal mushroom. Mycological Progress, 14(10). https://doi.org/10.1007/s11557-015-1105-4

Trovato Salinaro, A., Pennisi, M., Di Paola, R., Scuto, M., Crupi, R., & Cambria, M. et al. (2018). Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immunity &Amp; Ageing, 15(1). doi: 10.1186/s12979-017-0108-1

Trovato, A., Siracusa, R., Di Paola, R., Scuto, M., Ontario, M. L., Bua, O., Di Mauro, P., Toscano, M. A., Petralia, C. C. T., Maiolino, L., Serra, A., Cuzzocrea, S., & Calabrese, V. (2016). Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer's disease pathogenesis. Immunity & ageing : I & A, 13, 23. https://doi.org/10.1186/s12979-016-0078-8

Tzeng, T. T., Chen, C. C., Chen, C. C., Tsay, H. J., Lee, L. Y., Chen, W. P., ... & Shiao, Y. J. (2018). The cyanthin diterpenoid and sesterterpene constituents of Hericium erinaceus mycelium ameliorate Alzheimer’s disease-related pathologies in APP/PS1 transgenic mice. International Journal of Molecular Sciences, 19(2), 598.

Udo, H., Yoshida, Y., Kino, T., Ohnuki, K., Mizunoya, W., Mukuda, T., & Sugiyama, H. (2008). Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(53), 14522–14536. https://doi.org/10.1523/JNEUROSCI.3673-08.2008

Wang, H. X., & Ng, T. B. (2004). A new laccase from dried fruiting bodies of the monkey head mushroom Hericium erinaceum. Biochemical and biophysical research communications, 322(1), 17–21. https://doi.org/10.1016/j.bbrc.2004.07.075

Wang, M., Kanako, N., Zhang, Y., Xiao, X., Gao, Q., & Tetsuya, K. (2017). A unique polysaccharide purified from Hericium erinaceus mycelium prevents oxidative stress induced by H2O2 in human gastric mucosa epithelium cell. PloS one, 12(7), e0181546. https://doi.org/10.1371/journal.pone.0181546

Yanshree, Yu, W., Fung, M., Lee, C., Lim, L., & Wong, K. (2022). The Monkey Head Mushroom and Memory Enhancement in Alzheimer’s Disease. Cells, 11(15), 2284. doi: 10.3390/cells11152284

Yim, M. H., Shin, J. W., Son, J. Y., Oh, S. M., Han, S. H., Cho, J. H., Cho, C. K., Yoo, H. S., Lee, Y. W., & Son, C. G. (2007). Soluble components of Hericium erinaceum induce NK cell activation via production of interleukin-12 in mice splenocytes. Acta pharmacologica Sinica, 28(6), 901–907. https://doi.org/10.1111/j.1745-7254.2007.00577.x

Descargas

Publicado

2023-09-01

Cómo citar

Bonilla-Luna, D. ., Elías-Ramírez, M. . ., & Juárez-Zamora, A. . (2023). Melena de León (Hericium erinaceus): El guardián neuroprotector. RD-ICUAP, 9(27), 55–67. https://doi.org/10.32399/icuap.rdic.2448-5829.2023.27.1180

Número

Sección

Artículos