Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 8 No. 23 Mayo - Agosto 2022

QUORUM SENSING SYSTEMS OR HOW BACTERIA "SOCIALIZE"

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2022.23.817
Submitted
June 20, 2022
Published
June 20, 2022

Abstract

Although for many years it was thought that it was unlikely that bacteria communicate with each other by establishing a "social" behavior, numerous studies carried out in the last three decades revealed that bacteria do communicate with each other, and not only that, they can be censored or count. The communication systems that bacteria use for this purpose are called Quorum Sensing systems. In these systems, a decoy molecule known as an autoinducer is regularly used, which is produced individually by each of the cells of the colony. The autoinducer is then transported to the outside of the cell where it progressively accumulates as the number of bacteria in the colony increases. When a high concentration of the autoinducer is reached, it is detected by special receptor molecules, which in turn activate the expression of genes that respond to the cell density of the colony.

 

References

  1. Aframian, N., & Eldar, A. (2020). A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. Annual Review of Microbiology, 74(1), 587–606. https://doi.org/10.1146/annurev-micro-012220-063740
  2. Baltenneck, J., Reverchon, S., & Hommais, F. (2021). Quorum Sensing Regulation in Phytopathogenic Bacteria. Microorganisms, 9(2), 239. https://doi.org/10.3390/microorganisms9020239
  3. Banerji, R., Kanojiya, P., & Saroj, S. D. (2020). Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Critical Reviews in Microbiology, 46(2), 136–146. https://doi.org/10.1080/1040841x.2020.1735991
  4. Bassler, B. L. (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion in Microbiology, 2(6), 582–587. https://doi.org/10.1016/s1369-5274(99)00025-9
  5. Bassler, B. L., Greenberg, E. P., & Stevens, A. M. (1997). Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. Journal of Bacteriology, 179(12), 4043–4045. https://doi.org/10.1128/jb.179.12.4043-4045.1997
  6. Bivar Xavier, K. (2018). Bacterial interspecies quorum sensing in the mammalian gut microbiota. Comptes Rendus Biologies, 341(5), 297–299. https://doi.org/10.1016/j.crvi.2018.03.006
  7. Bzdrenga, J., Daudé, D., Rémy, B., Jacquet, P., Plener, L., Elias, M., & Chabrière, E. (2017). Biotechnological applications of quorum quenching enzymes. Chemico-Biological Interactions, 267, 104–115. https://doi.org/10.1016/j.cbi.2016.05.028
  8. Chadha, J., Harjai, K., & Chhibber, S. (2021). Revisiting the virulence hallmarks of Pseudomonas aeruginosa : a chronicle through the perspective of quorum sensing. Environmental Microbiology. https://doi.org/10.1111/1462-2920.15784
  9. Duplantier, M., Lohou, E., & Sonnet, P. (2021). Quorum Sensing Inhibitors to Quench P. aeruginosa Pathogenicity. Pharmaceuticals, 14(12), 1262. https://doi.org/10.3390/ph14121262
  10. Eberhard, A., Burlingame, A. L., Eberhard, C., Kenyon, G. L., Nealson, K. H., & Oppenheimer, N. J. (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry, 20(9), 2444–2449. https://doi.org/10.1021/bi00512a013
  11. Engebrecht, J., Nealson, K., & Silverman, M. (1983). Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell, 32(3), 773–781. https://doi.org/10.1016/0092-8674(83)90063-6
  12. Engebrecht, J., & Silverman, M. (1984). Identification of genes and gene products necessary for bacterial bioluminescence. Proceedings of the National Academy of Sciences, 81(13), 4154–4158. https://doi.org/10.1073/pnas.81.13.4154
  13. Fan, Q., Wang, H., Mao, C., Li, J., Zhang, X., Grenier, D., Yi, L., & Wang, Y. (2022). Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. Journal of Agricultural and Food Chemistry, 70(2), 429–445. https://doi.org/10.1021/acs.jafc.1c04751
  14. Grandclément, C., Tannières, M., Moréra, S., Dessaux, Y., & Faure, D. (2015). Quorum quenching: role in nature and applied developments. FEMS Microbiology Reviews, 40(1), 86–116. https://doi.org/10.1093/femsre/fuv038
  15. Hawver, L. A., Jung, S. A., & Ng, W. L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews, 40(5), 738–752. https://doi.org/10.1093/femsre/fuw014
  16. Kalia, V. C. (2014). Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Springer Publishing.
  17. Kleerebezem, M., Quadri, L. E. N., Kuipers, O. P., & de Vos, W. M. (1997). Quorum sensing by peptide pheromones and two‐component signal‐transduction systems in Gram‐positive bacteria. Molecular Microbiology, 24(5), 895–904. https://doi.org/10.1046/j.1365-2958.1997.4251782.x
  18. Miller, M. B., & Bassler, B. L. (2001). Quorum Sensing in Bacteria. Annual Review of Microbiology, 55(1), 165–199. https://doi.org/10.1146/annurev.micro.55.1.165
  19. Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System. Journal of Bacteriology, 104(1), 313–322. https://doi.org/10.1128/jb.104.1.313-322.1970
  20. Ng, W. L., & Bassler, B. L. (2009). Bacterial Quorum-Sensing Network Architectures. Annual Review of Genetics, 43(1), 197–222. https://doi.org/10.1146/annurev-genet-102108-134304
  21. Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576–588. https://doi.org/10.1038/nrmicro.2016.89
  22. Papon, N., & Stock, A. M. (2019). Two-component systems. Current Biology, 29(15), R724-R725. https://doi.org/10.1016/j.cub.2019.06.010
  23. Patankar, A. V., & González, J. E. (2009). Orphan LuxR regulators of quorum sensing. FEMS Microbiology Reviews, 33(4), 739–756. https://doi.org/10.1111/j.1574-6976.2009.00163.x
  24. Pollitt, E. J. G., West, S. A., Crusz, S. A., Burton-Chellew, M. N., & Diggle, S. P. (2014). Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus. Infection and Immunity, 82(3), 1045–1051. https://doi.org/10.1128/iai.01216-13
  25. Prescott, R. D., & Decho, A. W. (2020). Flexibility and Adaptability of Quorum Sensing in Nature. Trends in Microbiology, 28(6), 436–444. https://doi.org/10.1016/j.tim.2019.12.004
  26. Rémy, B., Mion, S., Plener, L., Elias, M., Chabrière, E., & Daudé, D. (2018). Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00203
  27. Schaefer, A. L., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1996). Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proceedings of the National Academy of Sciences, 93(18), 9505–9509. https://doi.org/10.1073/pnas.93.18.9505
  28. Shah, N., Gislason, A. S., Becker, M., Belmonte, M. F., Fernando, W. G. D., & de Kievit, T. R. (2020). Investigation of the quorum-sensing regulon of the biocontrol bacterium Pseudomonas chlororaphis strain PA23. PLOS ONE, 15(2), e0226232. https://doi.org/10.1371/journal.pone.0226232
  29. Sikdar, R., & Elias, M. (2020). Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Review of Anti-infective Therapy, 18(12), 1221–1233. https://doi.org/10.1080/14787210.2020.1794815
  30. Tripathi, S., Chandra, R., Purchase, D., Bilal, M., Mythili, R., & Yadav, S. (2022). Quorum sensing - a promising tool for degradation of industrial waste containing persistent organic pollutants. Environmental Pollution, 292, 118342. https://doi.org/10.1016/j.envpol.2021.118342
  31. Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J., & Salmond, G. P. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiology Reviews, 25(4), 365–404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x
  32. Xu, G. (2019). Evolution of LuxR solos in bacterial communication: receptors and signals. Biotechnology Letters, 42(2), 181–186. https://doi.org/10.1007/s10529-019-02763-6

Most read articles by the same author(s)