Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 8 No. 23 Mayo - Agosto 2022

Staphylococcus aureus and Streptococcus pneumoniae: NOSOCOMIAL INFECTIONS REPRESENTING AN URGENT THREAT TO PUBLIC HEALTH

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2022.23.814
Submitted
June 19, 2022
Published
June 20, 2022

Abstract

Antibiotics are a group of medicines that are used to treat infections caused by bacteria and parasites. Antibiotic resistance is generated by the incorrect use, or overused, of these compounds to treat bacterial infections. When antimicrobial drugs are used intensively, bacteria adapts and are capable for growing in the presence of popularly prescribed antibiotics. The intensive and long-term used of antimicrobial drugs is probably the main reason for the emergence and spread of highly antibiotic-resistant nosocomial infections. Recently, it has been observed an increase in multidrug resistant bacteria infections, becoming a serious healthcare problems. Infections produced by multidrug resistant bacteria may contribute to many serious  illnesses, from long-term hospitalization, to a considerable increase in treatment costs, and failure in treatments. One of the pathogens described as highly incident in nosocomial infections, identified as multidrug resistant bacteria with a bad prognostic in immunosuppressed patients, is Staphylococcus aureus, It is characterized by being the main cause of nosocomial bacteraemia in the world.  Another pathogen responsible for many pneumonia cases in children and adults is Streptococcus pneumoniae. Actual information about the resistance mechanisms and genes acquired by bacteria to survive antibiotic effects remark the importance and urgency of finding alternative therapies against nosocomial infections, including those produced by multidrug-resistant bacteria. Generation and propagation of multidrug-resistant bacteria must be prevented by severe restrictions in their medical use, respecting antibiotics prescriptions, including the number of doses ingested over a given period of time, and avoiding auto-medication.

Keywords

Staphylococcus aureus, Streptococcus pneumoniae, multidrug-resistance, bacteria, antibiotic

 

References

  1. Allegranzi, B., Nejad, S. B., Combescure, C., Graafmans, W., Attar, H., Donaldson, L., & Pittet, D. (2011). Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. The Lancet, 377 (9761). https://doi.org/10.1016/S0140-6736(10)61458-4.
  2. Blasi, F., Mantero, M., Santus, P., & Tarsia, P. (2012). Understanding the burden of pneumococcal disease in adults. Clinical Microbiology and Infection. 18:7-14. DOI:10.1111/j.1469-0691.2012.03937.x.
  3. Boswihi, S. S., & Udo, E. E. (2018). Methicillin-resistant Staphylococcus aureus : An update on the epidemiology, treatment options and infection control. Current Medicine Research and Practice, 8 (1), 18–24. https://doi.org/10.1016/j.cmrp.2018.01.001.
  4. Brandileone, M. C. D. C., Almeida, S. C. G., Bokermann, S., Minamisava, R., Berezin, E. N., Harrison, L. H., & De Andrade, A. L. S. S. (2021). Dynamics of antimicrobial resistance of Streptococcus pneumoniae following PCV10 introduction in Brazil: Nationwide surveillance from 2007 to 2019. Vaccine, 39 (23), 3207–3215. https://doi.org/https://doi.org/10.1016/j.vaccine.2021.02.063.
  5. Butler, C.C., Hillier, S., Roberts, Z., Dunstan, F., Howard, A., & Palmer, S. (2006). Antibiotic-resistant infections in primary care are symptomatic for longer and increase workload: outcomes for patients with E.coli UTIs. Br J Gen Pract. 56 (530): 686-692.
  6. Carroll, K. C., Hobden, J. A., Miller, S., Morse, S. A., Mietzner, T. A., Detrick, B., Mitchell, T. G., McKerrow, J. H., & Sakanari, J. A. (2016). Microbiología Médica (27th ed.). McGraw Hill Education.
  7. Challagundla, L., Reyes, J., Rafiqullah, I., Sordelli, D. O., Echaniz-Aviles, G., Velazquez-Meza, M. E., Castillo-Ramírez, S., Fittipaldi, N., Feldgarden, M., Chapman, S. B., Calderwood, M. S., Carvajal, L. P., Rincon, S., Hanson, B., Planet, P. J., Arias, C. A.,
  8. Diaz, L., & Robinson, D. A. (2018). Phylogenomic classification and the evolution of Clonal complex 5 methicillin-resistant Staphylococcus aureus in the Western Hemisphere. Frontiers in Microbiology, 9(AUG), 1–14. https://doi.org/10.3389/fmicb.2018.01901.
  9. Cloeckaert, A., Zygmunt, M. S., & Doublet, B. (2017). Editorial: Genetics of Acquired Antimicrobial Resistance in Animal and Zoonotic Pathogens. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02428.
  10. Cornick, J. E., & Bentley, S. D. (2012). Streptococcus pneumoniae: The evolution of antimicrobial resistance to beta-lactams, fluoroquinolones and macrolides. Microbes and Infection, 14(7–8), 573–583. https://doi.org/10.1016/j.micinf.2012.01.012.
  11. Dadgostar P. (2019). Antimicrobial Resistance: Implications and Costs. Infection and drug resistance, 12, 3903–3910. https://doi.org/10.2147/IDR.S234610.
  12. Edwards, A.M., & Massey, R.C. (2011). How does Staphylococcus aureus escape the bloodstream? Trends in Microbiology. 19 (4) ,184-190. https://doi.org/10.1016/j.tim.2010.12.005.
  13. Espinosa de los Monteros-Pérez, L. E., Jiménez-Juárez, R. N., Gómez-Barreto, D., & Navas-Villar, C. F. (2019). Streptococcus pneumoniae: prevalence in nasopharyngeal carriers of more than 50-years-old, in a Mexican rural community. Enfermedades Infecciosas y Microbiología Clínica, 37(1), 41–44. https://doi.org/10.1016/j.eimc.2018.03.008.
  14. European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017, Stockholm; 2018. https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2018.
  15. Falagas, M. E., Kopterides, P., & Siempos, I. I. (2006). Attributable Mortality of Acinetobacter baumannii Infection among Critically Ill Patients. Clinical Infectious Diseases, 43(3). https://doi.org/10.1086/505599.
  16. Feßler, A. T., Li, J., Kadlec, K., Wang, Y., & Schwarz, S. (2018). Chapter 4: Antimicrobial Resistance Properties of Staphylococcus aureus. In Staphylococcus aureus (Issue 2). Elsevier Inc. https://doi.org/10.1016/b978-0-12-809671-0.00004-8.
  17. Founou, R. C., Founou, L.L., & Essack, S. Y. (2017). Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS One.12: e0189621. https://doi.org/10.1371/journal.pone.0189621.
  18. Grace, D., & Fetsch, A. (2018). Chapter 1: Staphylococcus aureus—A Foodborne Pathogen: Epidemiology, Detection, Characterization, Prevention, and Control: An Overview. In Staphylococcus aureus. Elsevier Inc. https://doi.org/10.1016/b978-0-12-809671-0.00001-2.
  19. Hiramatsu, K., Katayama, Y., Matsuo, M., Sasaki, T., Morimoto, Y., Sekiguchi, A., & Baba, T. (2014). Multi-drug-resistant Staphylococcus aureus and future chemotherapy. Journal of Infection and Chemotherapy. 20(10) 593-601. https://doi.org/10.1016/j.jiac.2014.08.001.
  20. Ho, J., & Ip, M. (2019). Antibiotic-Resistant Community-Acquired Bacterial Pneumonia. Infectious Disease Clinics of North America, 33(4), 1087–1103. https://doi.org/10.1016/j.idc.2019.07.002.
  21. Huttner, A., Harbarth, S., Carlet, J., Cosgrove, S., Goossens, H., Holmes, A., Jarlier, V., Voss, A., & Pittet, D. (2013). Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrob. Resist. Infect. Control. 18 (2):31. https://doi.org/10.1186/2047-2994-2-31.
  22. Jernigan, J. A., Hatfield, K. M., Wolford, H., Nelson, R. E., Olubajo, B., Reddy, S. C., McCarthy, N., Paul, P., McDonald, L. C., Kallen, A., Fiore, A., Craig, M., & Baggs, J. (2020). Multidrug-Resistant Bacterial Infections in U.S. Hospitalized Patients, 2012–2017. New England Journal of Medicine, 382(14). https://doi.org/10.1056/NEJMoa1914433.
  23. Joo, E. J., Park, D. A., Kang, C. I., Chung, D. R. Song, J. H., Lee, S. M., & Peck, K. R. 2019. Reevaluation of the impact of methicillin-resistance on outcomes in patients with Staphylococcus aureus bacteremia and endocarditis. Korean J. Intern. Med. 34 (6): 1347-1362. https://doi.org/10.3904/kjim.2017.098.
  24. Kim, S. H., Chung, D. R., Song, J. H., Baek, J. Y., Thamlikitkul, V., Wang, H., Carlos, C., Ahmad, N., Arushothy, R., Tan, S. H., Lye, D., Kang, C. I., Ko, K. S., & Peck, K. R. (2020). Changes in serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates from adult patients in Asia: Emergence of drug-resistant non-vaccine serotypes. Vaccine, 38 (38), 6065–6073. https://doi.org/10.1016/j.vaccine.2019.09.065.
  25. Leme, R. C. P., Bispo, P. J. M., & Salles, M. J. (2021). Community-genotype methicillin-resistant Staphylococcus aureus skin and soft tissue infections in Latin America: a systematic review. Brazilian Journal of Infectious Diseases, 25 (1), 1–9. https://doi.org/10.1016/j.bjid.2021.101539.
  26. Ling, M. L., Apisarnthanarak, A., & Madriaga, G. (2015). The Burden of Healthcare-Associated Infections in Southeast Asia: A Systematic Literature Review and Meta-analysis. Clinical Infectious Diseases, 60 (11). https://doi.org/10.1093/cid/civ095.
  27. Magill, S. S., Edwards, J. R., Bamberg, W., Beldavs, Z. G., Dumyati, G., Kainer, M. A., Lynfield, R., Maloney, M., McAllister-Hollod, L., Nadle, J., Ray, S. M., Thompson, D. L., Wilson, L. E., & Fridkin, S. K. (2014). Multistate Point-Prevalence Survey of Health Care–Associated Infections. New England Journal of Medicine, 370 (13). https://doi.org/10.1056/NEJMoa1306801.
  28. Magill, S. S., O’Leary, E., Janelle, S. J., Thompson, D. L., Dumyati, G., Nadle, J., Wilson, L. E., Kainer, M. A., Lynfield, R., Greissman, S., Ray, S. M., Beldavs, Z., Gross, C., Bamberg, W., Sievers, M., Concannon, C., Buhr, N., Warnke, L., et al. (2018). Changes in Prevalence of Health Care–Associated Infections in U.S. Hospitals. New England Journal of Medicine, 379 (18). https://doi.org/10.1056/NEJMoa1801550.
  29. Moreno-Mochi, P., Vargas, J. M., Vivaldo, S., Bottiglieri, M., López, C., Mochi, S., Cobos, M., Castillo, M., del Campo, R., & Jure, M. A. (2020). Molecular epidemiology of methicillin-resistant Staphylococcus aureus from different population groups in Argentina. Journal of Global Antimicrobial Resistance, 23, 82–86. https://doi.org/10.1016/j.jgar.2020.07.016.
  30. Niek, W. K., Teh, C. S. J., Idris, N., Sit, P. S., Lee, Y. Q., Thong, K. L., & Sri La Sri Ponnampalavanar, S. (2020). Methicillin-resistant Staphylococcus aureus bacteraemia, 2003–2015: Comparative evaluation of changing trends in molecular epidemiology and clinical outcomes of infections. Infection, Genetics and Evolution, 85 (September), 104567. https://doi.org/10.1016/j.meegid.2020.104567.
  31. Onanuga, A., & Temedie, T.C. (2011). Multidrug-resistant intestinal Staphylococcus aureus among self-medicated healthy adults in Amassoma, South-South, Nigeria. Journal of Health, Population, and Nutrition. 29 (5): 446-453. https://doi.org/10.3329/jhpn.v29i5.8898.
  32. Organización Panamericana de la Salud (2021). Patógenos multirresistentes que son prioritarios para la OMS. https://www.paho.org/es/noticias/4-3-2021-patogenos-multirresistentes-que-son-prioritarios-para-oms.
  33. Pasachova-Garzón J, Ramírez-Martínez S, & Muñoz-Molina L. (2019). Staphylococcus aureus: generalidades, mecanismos de patogenicidad y colonización celular. NOVA.17 (32): 25-38.
  34. Reading, N. (2011). Streptococcus pneumoniae creciendo en agar columbia nutrido con sangre de caballo. Hemólisis alfa. Cepa mucoide aislado de la conjuntiva de un niño de seis semanas de edad. [Photograph]. Flickr. https://www.flickr.com/photos/nathanreading/6002927374 2011.
  35. Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018 Jan 1;9(1):522-554. https://doi.org/10.1080/21505594.2017.1313372.
  36. Sievert, D. M., Ricks, P., Edwards, J. R., Schneider, A., Patel, J., Srinivasan, A., Kallen, A., Limbago, B., & Fridkin, S. (2013). Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infection Control & Hospital Epidemiology, 34 (1). https://doi.org/10.1086/668770.
  37. Sikora A, & Zahra F. Nosocomial Infections. [Updated 2021 Aug 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559312/.
  38. Suetens, C., Latour, K., Kärki, T., Ricchizzi, E., Kinross, P., Moro, M. L., Jans, B., Hopkins, S., Hansen, S., Lyytikäinen, O., Reilly, J., Deptula, A., Zingg, W., Plachouras, D., & Monnet, D. L. (2018). Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: results from two European point prevalence surveys, 2016 to 2017. Eurosurveillance, 23 (46). https://doi.org/10.2807/1560-7917.ES.2018.23.46.1800516.
  39. Torres-Caycedo, M. I., Castro-Gutiérrez, L. T., Prada-Quiroga, C. F., & López-Velandia, D. P. (2019). Resistencia a antibióticos: Origen, evolución e infecciones asociadas a la atención en salud. Salud Uninorte, 34 (2). https://doi.org/10.14482/sun.34.2.615.32.
  40. Treulen, F. F., Salcedo, G. E., Garrido, F. I., Morales, C. E., Paz, E., Felmer, R. (2019). Antimicrobial activity of Luma apiculata against resistant strains of Staphylococcus aureus and Klebsiella pneumoniae. Pure Appl. Biol., 8(3): 1962-1974. http://dx.doi.org/10.19045/bspab.2019.80140.
  41. Varon, E., Mainardi, J. L., & Gutmann, L. (2010). Streptococcus pneumoniae: still a major pathogen. Clinical Microbiology and Infection. 16 (5). https://doi.org/10.1111/j.1469-0691.2010.03190.x.
  42. Velázquez-Acosta C, Cornejo-Juárez P, Volkow-Fernández P. (2018). Multidrug resistance E-ESKAPE strains isolated from blood cultures in patients with cancer. Salud Pública Méx.; 60:151-157. https://doi.org/10.21149/8767.
  43. Vincent, J. D., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C. D., Moreno, R., Lipman, J., Gomersall, C. Sakr, Y., Reinhart, K. (2009). International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA, 302(21). https://doi.org/10.1001/jama.2009.1754.
  44. Weiser, J. N., Ferreira, D. M. & Paton, J. C. Streptococcus pneumoniae: transmission, colonization and invasion. Nat. Rev. Microbiol. 16, 355–367 (2018). https://doi.org/10.1038/s41579-018-0001-8.
  45. Xochihua-Díaz L., Ortiz-Ibarra F. J., González-Saldaña, N., Rodríguez-Barragán, E., Luévanos-Velázquez, A., Merlo-Palomera, M., Rodríguez-Muñoz, L., Treviño-Valdez, P. (2021). Streptococcus pneumoniae: recomendaciones de un panel de expertos, AMIP 2020. Rev. Latin. Infect. Pediatr. 34(1):17-19. https://doi.org/10.35366/99822.
  46. Zhang, H., Zheng, Y., Gao, H., Xu, P., Wang, M., Li, A., Miao, M., Xie, X., Deng, Y., Zhou, H., Du, H. (2016). Identification and characterization of Staphylococcus aureus strains with an incomplete hemolytic phenotype Front. Cell. Infect. Microbiol., 6(146): 1-7. https://doi.org/10.3389/fcimb.2016.00146