Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 8 No. 22 Enero - Abril 2022

Gas sensors and their impact on our day by day

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2022.22.675
Submitted
November 15, 2021
Published
January 31, 2022

Abstract

This paper presents an approach to the importance of gas sensors at industry, at the health sector and at home. Throughout history it has been necessary to detect gases, at first we used the nose, the gas sensor that we have incorporated in our body but later it was inevitable to develop sensors to replace the olfactory system to avoid risks and increase detection efficiency. Examples of application in each of the mentioned sectors are presented and the importance of each of them is analyzed. Science and technology development have allowed advances in the production of sensors that are used in the monitoring of toxic gases, explosion safety systems, as environmental detectors, smoke detection systems in our homes and recently in SARS-CoV-2 virus detection strategies and risk reduction of contagion during the COVID-19 pandemic through biomarker sensors and monitoring of CO2 concentrations, respectively. It is shown how gas sensors have helped our society in its purpose of ensuring a better life quality for those of%

References

  1. Aguilera-Benito, P., Piña-Ramirez, C., & Viccione, G. (2021). Analysis of air quality by ventilation in house in the framework of the COVID-19 pandemic: the case of Spain. (June). https://doi.org/10.20944/preprints202106.0604.v1
  2. Ahrens, M., & Evarts, B. (2020). NFPA: Fire Loss in the United States During 2019. NFPA Research Report, (September), 1–11. Retrieved from https://www.nfpa.org/News-and-Research/Data-research-and-tools/US-Fire-Problem/Fire-loss-in-the-United-States
  3. Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models. Endeavour, 40(3), 178-187. https://doi.org/10.1016/j.endeavour.2016.07.002
  4. Burridge, H. C., Bhagat, R. K., Stettler, M. E. J., Kumar, P., De Mel, I., Demis, P., … Linden, P. F. (2021). The ventilation of buildings and other mitigating measures for COVID-19: A focus on wintertime. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477(2247), 1–62. https://doi.org/10.1098/rspa.2020.0855
  5. Constantinoiu, I., & Viespe, C. (2020). Zno metal oxide semiconductor in surface acoustic wave sensors: A review. Sensors (Switzerland), 20(18), 1–20. https://doi.org/10.3390/s20185118
  6. David, E. W. (1999). Semiconducting oxides as gas-sensitive resistors. Sensors and Actuators B: Chemical, 57(January), 1–16.
  7. Devkota, J., Ohodnicki, P. R., & Greve, D. W. (2017). SAW sensors for chemical vapors and gases. Sensors (Switzerland), 17(4), 13–15. https://doi.org/10.3390/s17040801
  8. Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 229, 206-217. https://doi.org/10.1016/j.mseb.2017.12.036
  9. Feng, S., Farha, F., Li, Q., Wan, Y., Xu, Y., Zhang, T., & Ning, H. (2019). Review on smart gas sensing technology. Sensors (Switzerland), 19(17), 1–22. https://doi.org/10.3390/s19173760
  10. Gaffney, E. M., Lim, K., & Minteer, S. D. (2020). Breath biosensing: using electrochemical enzymatic sensors for detection of biomarkers in human breath. Current Opinion in Electrochemistry, 23, 26–30. https://doi.org/10.1016/j.coelec.2020.02.014
  11. Galstyan, V., Comini, E., Faglia, G., & Sberveglieri, G. (2013). TiO2 nanotubes: Recent advances in synthesis and gas sensing properties. Sensors (Switzerland), 13(11), 14813–14838. https://doi.org/10.3390/s131114813
  12. Gautam, A., Verma, G., Qamar, S., & Shekhar, S. (2021). Vehicle Pollution Monitoring, Control and Challan System Using MQ2 Sensor Based on Internet of Things. Wireless Personal Communications, 116(2), 1071–1085. https://doi.org/10.1007/s11277-019-06936-4
  13. Ghorbani, R., & Schmidt, F. M. (2017). Real-time breath gas analysis of CO and CO2 using an EC-QCL. Applied Physics B: Lasers and Optics, 123(5), 1–11. https://doi.org/10.1007/s00340-017-6715-x
  14. Ibrahim, M. T., & Manap, H. (2021). Optimum Wavelength for Oxygen Detection using optical absorption. Journal of Physics: Conference Series, 1874(1). https://doi.org/10.1088/1742-6596/1874/1/012079
  15. Leth, P., Gregersen, M., & Sabroe, S. (1998). Fatal residential fire accidents in the municipality of Copenhagen, 1991–1996. Preventive medicine, 27(3), 444-451. https://doi.org/10.1006/pmed.1998.0295Get
  16. Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., Hu, P., Yang, C., Grundmann, M., Liu, X., & Fu, Y. (2019). Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons, 6(3), 470–506. https://doi.org/10.1039/c8mh01365a
  17. Ligor, T. (2009). Analytical methods for breath investigation. Critical Reviews in Analytical Chemistry, 39(1), 2–12. https://doi.org/10.1080/10408340802569498
  18. Lu, Y., Li, Y., Zhou, H., Lin, J., Zheng, Z., Xu, H., ... & Liu, L. (2021). Affordable measures to monitor and alarm nosocomial SARS‐CoV‐2 infection due to poor ventilation. Indoor air. https://doi.org/10.1111/ina.12899
  19. Mahari, S., et al., eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv, 2020. https://doi.org/10.1101/2020.04.24.059204
  20. Moitra, P., et al., Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS nano, 2020. https://doi.org/10.1021/acsnano.0c03822
  21. Montaño Arias, N. M., & Sandoval Pérez, A. L. (2007). Contaminacion atmosferica y salud. Revista cientifica de America Latina y el Caribe, 14, 2–10.
  22. Mumma, S. A. (2004). Transient occupancy ventilation by monitoring CO2. ASHRAE IAQ Applications, 5(1), 21-23.http://www.doas-radiant.psu.edu/IAQ_winter_04.pdf
  23. Newman, J. D., Tigwell, L. J., Turner, A. P. F., & Warner, P. J. (2004). Biosensors: a clearer view. Biosensors. 2004‐The 8th World Congress on Biosensors
  24. Ogawa, M., & Togawa, T. (2000, October). Monitoring daily activities and behaviors at home by using brief sensors. In 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No. 00EX451) (pp. 611-614). IEEE. https://doi.org/10.1109/MMB.2000.893858
  25. Oh, E. H., Song, H. S., & Park, T. H. (2011). Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme and Microbial Technology, 48(6–7), 427–437. https://doi.org/10.1016/j.enzmictec.2011.04.003
  26. Qian, H., Miao, T., Liu, L., Zheng, X., Luo, D., & Li, Y. (2021). Indoor transmission of SARS‐CoV‐2. Indoor Air, 31(3), 639-645 https://doi.org/10.1111/ina.12766
  27. Qiu, G., et al., Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS nano, 2020. 14(5): p. 5268-5277. https://doi.org/10.1021/acsnano.0c02439
  28. Schade, W., Reimer, V., Seipenbusch, M., & Willer, U. (2021). Experimental Investigation of Aerosol and CO2 Dispersion for Evaluation of COVID-19 Infection Risk in a Concert Hall. International Journal of Environmental Research and Public Health, 18(6), 3037. https://doi.org/10.3390/ijerph18063037
  29. Schibuola, L., & Tambani, C. (2021). High energy efficiency ventilation to limit COVID-19 contagion in school environments. Energy and Buildings, 240, 110882. https://doi.org/10.1016/j.enbuild.2021.110882
  30. Seo, G., et al., Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano, 2020. 14(4): p. 5135-5142. https://doi.org/10.1021/acsnano.0c02823
  31. Shan, B., Broza, Y. Y., Li, W., Wang, Y., Wu, S., Liu, Z., … Haick, H. (2020). Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath. ACS Nano, 14(9), 12125–12132. https://doi.org/10.1021/acsnano.0c05657
  32. Stetter, J. R., Penrose, W. R., & Yao, S. (2003). Sensors, Chemical Sensors, Electrochemical Sensors, and ECS. Journal of The Electrochemical Society, 150(2), S11. https://doi.org/10.1149/1.1539051
  33. Wang, G., Yang, S., Cao, L., Jin, P., Zeng, X., Zhang, X., & Wei, J. (2021). Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coordination Chemistry Reviews, 445, 214086. https://doi.org/10.1016/j.ccr.2021.214086
  34. Xuan, J., Zhao, G., Sun, M., Jia, F., Wang, X., Zhou, T., Yin, G., & Liu, B. (2020). Low-temperature operating ZnO-based NO2sensors: A review. RSC Advances, 10(65), 39786–39807. https://doi.org/10.1039/d0ra07328h
  35. Yamazoe, N., Sakai, G., & Shimanoe, K. (2003). Oxide semiconductor gas sensors. Catalysis Surveys from Asia, 7(1), 63–75. https://doi.org/10.1023/A:1023436725457
  36. Yang, B., Myung, N. V., & Tran, T. T. (2021). 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. Advanced Electronic Materials, 7(9), 1–37. https://doi.org/10.1002/aelm.202100271
  37. Yang, D., Gopal, R. A., Lkhagvaa, T., & Choi, D. (2021). Metal-oxide gas sensors for exhaled-breath analysis: A review. Measurement Science and Technology, 32(10). https://doi.org/10.1088/1361-6501/ac03e