Skip to main navigation menu Skip to main content Skip to site footer

Notes

Entre ajolotes y mascarillas

DNA nanorobots: a new hope for medical biotechnology

Submitted
November 10, 2021
Published
September 15, 2021

Abstract

Cancer is one of the most deadly diseases worldwide. The main problem of current drugs is the lack of specificity of the treatment and the damage to healthy tissue. Currently, medical nanobiotechnology develops methods to treat cancer in a localized and rapid way through DNA nanorobots, causing the death of the tumor and the release of drugs in a targeted way; this new technology improves every year, presenting the potential for the treatment of various pathologies related to the circulatory system and other areas.

References

  1. Arroyo-Hernández, M., Zinser-Sierra, J. W., & Vázquez-García, J. C. (2019). Detección temprana de cáncer de pulmón en México. Salud Pública de México, 61(3, may-jun), 347. https://doi.org/10.21149/10326
  2. Brau-Figueroa, H., Palafox-Parrilla, E. A., & Mohar-Betancourt, A. (2020). El Registro Nacional de Cáncer en México, una realidad. Gaceta Mexicana de Oncología, 19(3). https://doi.org/10.24875/j.gamo.20000030
  3. Castro, C. E. (2016). The rise of the DNA nanorobots. Mechanical Engineering, 138(8), 44–49. https://doi.org/10.1115/1.2016-aug-3
  4. Dey, S., Fan, C., Gothelf, K. V, Li, J., Lin, C., Liu, L., Liu, N., Nijenhuis, M. A. D., Saccà, B., Simmel, F. C., Yan, H., & Zhan, P. (2021). DNA origami. Nature Reviews Methods Primers, 1(1). https://doi.org/10.1038/s43586-020-00009-8
  5. Fakruddin, M., Hossain, Z., & Afroz, H. (2012). Prospects and applications of nanobiotechnology: A medical perspective. Journal of Nanobiotechnology, 10, 1–8. https://doi.org/10.1186/1477-3155-10-31
  6. Li, H., Liu, J., & Gu, H. (2019). Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot. Journal of Cellular and Molecular Medicine, 23(3), 2248–2250. https://doi.org/10.1111/jcmm.14127
  7. Li, S., Jiang, Q., Liu, S., Zhang, Y., Tian, Y., Song, C., Wang, J., Zou, Y., Anderson, G. J., Han, J. Y., Chang, Y., Liu, Y., Zhang, C., Chen, L., Zhou, G., Nie, G., Yan, H., Ding, B., & Zhao, Y. (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology, 36(3), 258–264. https://doi.org/10.1038/nbt.4071
  8. Lifshitz, A. (2007). Un clínico en el siglo XXI. Gaceta Medica de Mexico, 143(3), 279–283.
  9. Martz, L. (2012). DNA nanorobots. Science-Business EXchange, 5(9), 222–222. https://doi.org/10.1038/scibx.2012.222
  10. Raúl Pefaur, D. (2013). Imaginología actual del cáncer pulmonar. Revista Médica Clínica Las Condes, 24(1), 44–53. https://doi.org/10.1016/s0716-8640(13)70128-7
  11. Tasciotti, E. (2018). Smart cancer therapy with DNA origami. Nature Biotechnology, 36(3), 234–235. https://doi.org/10.1038/nbt.4095
  12. Upadhyay, V. P., Sonawat, M., Singh, S., & Merugu, R. (2020). NANO ROBOTS IN MEDICINE: A REVIEW. International Journal of Engineering Technologies and Management Research, 4(12), 27–37. https://doi.org/10.29121/ijetmr.v4.i12.2017.588