Skip to main navigation menu Skip to main content Skip to site footer

Articles

Biological Diversity: Safeguarding Life on Earth

Nitrogen efficiency in maize seedlings

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2019.14.388
Submitted
February 23, 2021
Published
May 15, 2019

Abstract

The aim of this paper is to evaluate the morphological response in seedlings of different genotypes of maize (Zea mays L.) grown under contrasting nitrogen conditions. As a plant material, four maize cultivars grown in the Mexican State of Puebla were studied: variety SB 302 Berentsen, blue landrace (Hueytamalco), and white and blue landraces (Tepexi de Rodríguez) assessed by 42- day trials of plant growth using a floating root technique. The two-factor experiments were a completely randomized design. The plants were grown under controlled conditions using the modified nutrient solution at 20 and 100% nitrogen. The results show that the maize seedlings revealed a significant level of phenotypic variation in their architecture. The blue landrace (Tepexi de Rodriguez) showed the best results both at 20 and 100% nitrogen.

References

Abdel, G., A. H., Bharath, K., Reyes, M., J., Gonzalez, P., P. J., Jansen, C., San Martin, J. P., Lee, M. y Lübberstedt, T. (2013). Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica, 189(1): 123-133.

Camacho, G., A. K. (2016). Variación fenotípica en la arquitectura radicular del maíz (Zea mays L): Indicadores de eficiencia a nitrógeno en etapas de crecimiento de la plántula. Tesis de Licenciatura, Escuela de Biología, Benemérita Universidad Autónoma de Puebla, México, p. 103.

Espinoza-Velázquez, J., Valdés-Reyna, J. y Alcalá-Rodríguez, J. M. (2012). Morfología y anatomía de radículas múltiples en plántulas de maíz derivadas de cariopsis con poliembrionía. Polibotánica, 33: 207-221.

Grzesiak, M. T. (2009). Impact of soil compaction on root architecture, leaf water status, gas exchange and growth of maize and triticale seedlings. Plant Root, 3: 10-16.

Hoagland, D. R. y Arnon, D. I. (1950). The water-culture method for growing plants without soil. California, Agricultural Experiment Station, Circular 347, p. 32.

Hochholdinger, F., Feix, G. (1998). Early post-embryonic root formation is affected in the maize mutant Irt1. Plant J., 16: 247-255.

Hochholdinger, F., Woll, K., Sauer, M. y Dembinsky, D. (2004). Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. Annals of Botany, 93(4): 359-368.

Liedgens, M., Soldati, A., Stamp, P. y Richner, W. (2000). Root development of maize (Zea mays L.) as observed with minirhizotrons in lysimeters. Crop Science, 40: 1665-1672.

Linkohr, B. I., Williamson, L., Fitter, A. y Leyser, H. (2002). Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 29(6): 751-760.

López-Bucio, J., Cruz-Ramírez, A. y Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6: 280-287.

Martínez de la Cruz, E., Beltrán, P. E. y López, B. J. (2011). La arquitectura radicular del maíz (Zea mays L.). Ciencia Nicolaita, p. 13.

Reyes, M. J., Martínez, M. D., Andrés, H. A. R. y Mejía, P. C. (2016). Arquitectura radicular en plantas de maíz por la influencia de nitrógeno. Revista Saberes Compartidos, 13-14: 27-32.

Sen, S., Setter, T. y Smith, M. E. (2012). Maize root morphology and nitrogen use efficiency—a review. Agricultural reviews, 33(1): 16-26.

Woll, K., Borsuk, L., Stransky, H., Nettleton, D., Schnable, P. S. Y Hochholdinger, F. (2005). Isolation characterization and pericycle specific transcriptome analyses of the novel maize (Zea mays L.) lateral and seminal root initiation mutant rum. Plant Physiol., 139: 1255-1267.