Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol 10 (2024): Special Postgraduate Issue ICUAP

CARBON NANOMATERIALS FOR PHARMACEUTIC LIBERATION

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2024.Especial.1355
Submitted
March 28, 2024
Published
April 24, 2024

Abstract

In recent years, significant progress has been made in the development of biomedical applications, primarily due to the tremendous effort of the international scientific community in nanoscience and nanotechnology. Especially in the study and development of nanoparticles, which are structures with sizes smaller than 100 nanometers. Nanoparticles are composed of a few hundred atoms, which makes their properties unique and considerably different at the macroscopic level. Among the family of nanostructured materials with unique properties are carbon nanoparticles, which are very versatile due to their various structures, making them exceptional options for use as drug carriers. This makes them a prominent choice for oncological applications, especially in cancer treatment. In this work, we explore the fascinating world of nanomaterials with exceptional properties for drug delivery. Such as the surprising carbon nanostructures, composed of nanotubes and graphene, with resistance and biocompatibility ideal for biomedical applications. The main importance is that these promising advances anticipate a revolution in the diagnosis, treatment, and prevention of diseases, which in the future may redefine the future of medicine.

References

Ali, N., Bahman A.M., Aljuwayhel, N.F., Ebrahim, S.A., Mukherjee, S., Alsayegh, A. (2021). Carbon-Based Nanofluids and Their Advances Towards Heat Transfer Applications—A Review. Nanomaterials 11 (1628). https://doi.org/10.3390/nano11061628.

Adrita, S.H.; Tasnim, K.N.; Ryu, J.H.; Sharker, S.M. (2020). Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. J. Nanotheranostics. 1 (58-77). https://doi.org/10.3390/jnt1010006.
Contreras-Camach M., Martínez-Luevanos A.,Perez-Berumen C. M,, Estrada-Flores S., (2023) Avances en el desarrollo de nanopartículas transportadores de fármacos para el tratamiento de cáncer, CienciAcierta, 74. http://www.cienciacierta.uadec.mx/articulos/cc74/CC%2374completo.pdf

Bao Y.W., Hua X.W., Li Y.H., Jia H.R., Wu F.G. (2018). Hyperthemia-Promoted Cytosolic and Nuclear Delivery of Copper/Carbon Quantum Dot-crosslinked Nanosheets: Multimodal Imaging-guided Photothermal Cancer Therapy, ACS Appl. Mater. Interfaces 10 (1544e1555)., https://doi.org/10.1021/ acsami.7b15332.

Chuyi H., Xianming Z., Fan W., Qinghua Y., Feng C., Di S., Zhangyou Y., Tingting W., Mingyue J., Tao D., Chao Y. (2021). Duplex Metal Co-Doped Carbon Quantum Dots-Based Drug Delivery System With Intelligent Adjustable Size As Adjuvant For Synergistic Cancer Therapy, Carbon 183 (789-808), https://doi.org/10.1016/j.carbon.2021.07.063.

Daphne E. S. M., Pharm D., B.C.-ADM, CDCES. (2023). University of Illinois at Chicago College of Pharmacy.

Deng T., Wang J., Li Y., Han Z., Peng Y., Zhang J., Gao Z., Gu Y., Deng D. (2018). Quantum Dots-Based Multifunctional Nano-Prodrug Fabricated by Ingenious Self-Assembly Strategies for Tumor Theranostic, ACS Appl. Mater. Interfaces 10 (27657e27668). https://doi.org/10.1021/acsami.8b08512.

Granada-Ramírez D.A., Arias-Cerón J.S., Rodríguez-Fragoso P., Vázquez-Hernández F., Luna-Arias J.P., Herrera-Pérez J.L., Mendoza-Álvarez J.G. Capitulos 16 y 20 (2018) in Quantum dots for biomedical applications, Nanobiomaterials, chapter 16 (411-436), Ed. Roger Narayan, Woodhead publishing, Elsevier. https://doi.org/10.1016/B978-0-08-100716-7.00016-7

Geim K. S., , Morozov A. K., , Jiang S. V., Zhang, D., , Dubonos Y., , Grigorieva S.V, , I. V. Firsov, A. A. (2004) Electric Field Effect In Atomically Thin Carbon Films, Science 306(5696): 666–669, https://doi.org/10.48550/arXiv.cond-mat/0410631.

Gu Z., Zhu S., Yan L., Zhao F., Zhao Y. (2019). Graphene-Based Smart Platforms For Combined Cancer Therapy. Adv Mater 31( 1–27).

Hahm M., Hashim D., Vajtai R., Ajayan P. (2011). A Review: Controlled Synthesis Of Vertically Aligned Carbon Nanotubes. Carbon Lett. 12(185). https://doi.org/10.5714/CL.2011.12.4.185.

Huang X., Mclean R., Zheng M. (2005). High-Resolution Length Sorting And Purification Of DNA-Wrapped Carbon Nanotubes By Size-Exclusion Chromatography. Anal Chem 77(19) 6225-6228. https://doi.org/10.1021/acsnano.3c07668

Hua X.W., Bao Y.W., Chen Z., Wu F.G., (2017). Carbon Quantum Dots With Intrinsic Mitochondrial Targeting Ability for Mitochondria-Based Theranostics, Nanoscale 9 (10948e10960). https://doi.org/10.1039/c7nr03658b.

Irum R., Ayesha K., Zanib A, Bakhtiar M. (2016). Exploration of Epoxy Resins, Hardening Systems, and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review, Polymer-Plastics Technology and Engineering, 55(3) 312-333. https://doi: 10.1080/03602559.2015.1070874

Juan P. G., Esdras A. Z.-M, Lourdes R.-F. (2022). Chapter, Advances in Graphene Platforms for Drug Delivery in Cancer and Its Biocompatibility. http://dx.doi.org/10.5772/intechopen.103688.

Jashandeep K., Gurlal S. G., Kiran J. (2019). Characterization And Biology Of Nanomaterials For Drug Delivery, chapter 5, Applications of Carbon Nanotubes in Drug Delivery: A Comprehensive Review. https://doi.org/10.1016/B978-0-12-814031-4.00005-2.

Lyra, K.., Kaminari, A., Panagiotaki, K.N., Spyrou, K., Papageorgiou, S., Sakellis, E., Katsaros, F.K., Sideratou, Z. (2021). Multi-Walled Carbon Nanotubes Decorated With Guanidinylated Dendritic Molecular Transporters: An Efficient Platform For The Selective Anticancer Activity Of Doxorubicin, Pharmaceutics. 13(858). https://doi.org/10.3390/pharmaceutics13060858.

Lijima S. (1991). Helical Microtubules of Graphitic Carbon. Nature 354, (6348-56). https://doi: 10.1038/354056a0.

Loera-Serna S, Ruiz-Angeles J, Flores-Moreno J, Soto-Portas L. (2012). Protegiendo fármacos con nanomateriales inteligentes. Mundo Nano. 5. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-56912012000100059

Maiti D., Tong X., Mou X., Yang K. (2019) Carbon-based Nanomaterials for Biomedical Applications: a Recent Study. Front Pharmacol, 9,(1–16). https://doi.org/10.3389/fphar.2018.01401

Mahor A., Singh P.P., Bharadwaj P., Sharma N., Yadav S., Rosenholm J.M , Bansal K.K, (2021), Carbon-based nanomaterials for delivery of biologicals and therapeutics: A cutting-edge technology, Journal of Carbon Research,, 7, 19. https://doi.org/10.3390/c7010019

Mohd N. N., Asyraf, M.R.M., Khalina, A., Abdullah, N., Sabaruddin, F.A., Kamarudin, S.H., Ahmad, S., Mahat, A.M., Lee, C.L., Aisyah, H.A. (2021). Fabrication, Functionalization, And Application Of Carbon Nanotube-Reinforced Polymer Composite: An Overview. Polymers 13(1047). https://doi.org/10.3390/polym13071047

Caracuel A. M., (2020) Sistemas de liberación controlada de fármacos obtenidos por impresión 3d. Mecanismos de liberación y factores que influyen, [Tesis de licenciatura, Universidad de Sevilla]. Deposito de investigación Universidad de Sevilla. https://hdl.handle.net/11441/103272


Nayab A., Murtaza N. A., Tooba J. K. (2021). Carbon Quantum Dots For Biomedical Applications: Review And Analysis, Front. Mater. 8 https://doi.org/10.3389/fmats.2021.700403.

PALIWAL S., PANDEY K., PAWAR S., JOSHI H., BISHT N. (2020). A Review On Carbon Nanotubes: As A Nano Carrier Drug Delivery System, Indian J Pharm Sci. 82(5):766-772.

Parand R. R., Roger J. N. (2021). Recent Advances in Carbon Nanomaterials for Biomedical Applications: A Review. Current Opinion in Biomedical Engineering, 17(100262), https://doi.org/10.1016/j.cobme.2021.100262.

Rao C., Govindaraj A., Gundiah G., Vivekchand S. (2004). Nanotubes And Nanowires. Chem Eng Sci. 59(4665). https://doi.org/10.1016/j.ces.2004.07.067.
Rojas-Aguirre Y., Aguado-Castrejón K., González-Méndez I., (2016) La nanomedicina y los sistemas de liberación de fármacos: ¿la revolución de la terapia contra el cáncer?, Educación Química,, 27, 286-291. https://doi.org/10.1016/j.eq.2016.07.002

Rummeli M., Borowiak-Palen E., Gemming T., Pichler T., Knupfer M., Kalbac M., Dunsch L., Jost O., Silva S., PompeW., Buchner B. (2005). Novel Catalysts, Room Temperature, And The Importance Of Oxygen For The Synthesis Of Single-Walled Carbon Nanotubes. Nano Lett 5(7) 1209-1215. https://doi: 10.1021/nl050692v

Shi J., Xiaoyuan Y., Lei W., Yan L., Jun G., Jing Z., Rou M., Ruiyuan L., Zhenzhong Z. (2013). Pegylated Fullerene/Iron Oxide Nanocomposites For Photodynamic Therapy, Targeted Drug Delivery And MR Imaging. Biomaterials 3437(9666-9677). https://doi.org/10.1016/j.biomaterials.2013.08.049

Vander Wal RL, Ticich TM, Curtis VE.(2000). Diffusion Flame Synthesis Of Single-Walled Carbon Nanotubes. Chem Phys Lett. 323(217-223). https://doi.org/10.1016/S0009-2614(00)00522-4.

Vázquez-Hernández F., Granada-Ramírez D.A., Arias-Cerón J.S., Rodriguez-Fragoso P., Mendoza-Álvarez J.G., Ramón-Gallegos E., Cruz-Orea A., Luna-Arias J.P., (2018). Use Of Nanostructured Materials In Drug Delivery, chapter 20, Nanobiomaterials https://doi.org/10.1016/B978-0-08-100716-7.00020-9

Wang Z., Colombi C. L., Wei G. (2017). Recent Advances In The Synthesis Of Graphene-Based Nanomaterials For Controlled Drug Delivery. Applied Sciences. 7(11) 1175. https://doi.org/10.3390/app7111175.

Wu H., Su W., Xu H. (2021). Applications Of Carbon Dots On Tumour Theranostics. VIEW. 2(20200061). https://doi.org/10.1002/VIW.20200061.

Xia Q., Zhang Z., Liu Y., Leng J. (2020). Buckypaper And Its Composites For Aeronautic Applications, Composites Part B: Engineering, 199 (108231). https://doi.org/10.1016/j.compositesb.2020.108231

Yoosefian M., Jahani M. (2019). A Molecular Study On Drug Delivery System Based On Carbon Nanotube For The Novel Norepinephrine Prodrug, Droxidopa. J Mol Liq. 284:258–264. https://doi.org/10.1016/j.molliq.2019.04.016

Zahra S. (2021). Journal of Drug Delivery Science and Technology 66 (102790) https://doi.org/10.1016/j.jddst.2021.102790.

Zhang C., Wu L., de Perrot M., Zhao X. (2021). Carbon Nanotubes: A Summary Of Beneficial And Dangerous Aspects Of An Increasingly Popular Group Of Nanomaterials, Front. Oncol. 11(693814). doi: 10.3389/fonc.2021.693814.