Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol 10 (2024): Special Postgraduate Issue ICUAP

FUNCTIONAL TEXTILES TO INHIBITION OF BACTERIA

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2024.Especial.1352
Submitted
March 28, 2024
Published
April 24, 2024

Abstract

Nanomaterials have turned the textile industry on its head, improving the properties of functional fabrics by adding different materials to improve durability, water repellence, self-cleaning, antibacterial, UV protection, among others. In particular, antibacterial characteristics have been of interest in textiles for medical and sportswear. Silver-zeolite has been found to have a biocidal effect, which is related to the oxidation state of the silver species and the particle size, such biocidal properties help the inhibition of Staphylococcus aureus, Escherichia coli (E. coli) and Candida albicans (C. albicans). In this work, different concentrations of silver exchange zeolite were studied on a cotton substrate and the effect of inhibiting the proliferation of Escherichia coli (E. coli). The Ag+ ion exchange zeolite was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD); furthermore, the antibacterial efficiency of the fabric was evaluated by the Kirby-Bauer Method.

References

Alexander, J. W. (2009). History of the medical use of silver. Surgical Infections, 10(3), 289-292. https://doi.org/10.1089/sur.2008.9941

Cruz-Leal, M., Goiz, O., Niño, T. I. M., Coutino-Gonzalez, E., Albarado-Ibáñez, A., Pérez-Sánchez, G. F., & Chen, J. (2023). Silver cluster supported in zeolite as antimicrobial agent to textiles. MRS Advances. https://doi.org/10.1557/s43580-023-00741-9

Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278-284. https://doi.org/10.1016/j.msec.2014.08.031

Djurišić, A. B., Leung, Y. H., Ng, A. M. C., Xu, X., Lee, P. K. H., Degger, N., & Wu, R. (2015). Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small, 11(1), 26-44. https://doi.org/10.1002/smll.201303947

Dutta, P., Wang, B., (2019), Zeolite-supported silver as antimicrobial agents, Coordination Chemistry Reviews, 383, https://doi.org/10.1016/j.ccr.2018.12.014

Feng, Qing & Wu, J. & Chen, Guo-Qiang & Cui, Fu-Zhai & Kim, T. & Kim, J.. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research - J BIOMED MATER RES. 52. 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4%3C662::AID-JBM10%3E3.0.CO;2-3

Guisnet, M., Influence of zeolite composition on catalytic activity, from Supported catalysts and their applications; The Royal Society of Chemistry, Cambridge, 2001; p.55. https://doi.org/10.1039/9781847551962-00055

Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., De Aberasturi, D. J., De Larramendi, I. R., Rojo, T., Serpooshan, V., Parak, W. J., & Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499-511. https://doi.org/10.1016/j.tibtech.2012.06.004

Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128-145. https://doi.org/10.1016/j.jconrel.2011.07.002

Hussein, U. A., Mahmoud, Z. H., Alaziz, K. M. A., Alid, M. L., Yasin, Y., Ali, F. K., Faisal, A. N., Ahmed, N., & Kianfar, E. (2023). Antimicrobial finishing of textiles using nanomaterials. Brazilian Journal of Biology, 84. https://doi.org/10.1590/1519-6984.264947

Instituto de Ciencias de la BUAP. (2023,30 de agosto). ¿Qué son las zeolitas y Cómo pueden contribuir a la ciencia? [Video]. YouTube. https://www.youtube.com/watch?v=LXCCctbUKzY

Jiraroj, Duangkamon & Tungasmita, Sukkaneste & Nuntasri, Duangamol. (2014). Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity. Powder Technology. 264. 418–422. https://doi.org/10.1016/j.powtec.2014.05.049

Khatami, M., Varma, R. S., Zafarnia, N., Yaghoobi, H., Sarani, M., & Kumar, V. (2018). Applications of green synthesized AG, ZNO and AG/ZNO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustainable Chemistry and Pharmacy, 10, 9-15. https://doi.org/10.1016/j.scp.2018.08.001

Lemire, J., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371-384. https://doi.org/10.1038/nrmicro3028

Li Y., Li L., Yu j., Applications of Zeolites in Sustainable Chemistry, Chem, 3(6), pp. 928-949 (2017), https://doi.org/10.1016/j.chempr.2017.10.009

Matsumura, Y., Yoshikata, K., Kunisaki, S. -i., & Tsuchido, T. (2003). Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Applied and Environmental Microbiology, 69(7), 4278–4281. https://journals.asm.org/doi/10.1128/aem.69.7.4278-4281.2003

Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clinical Microbiology Reviews, 11(1), 142-201. https://doi.org/10.1128/cmr.11.1.142

Noyen JV, Wilde AD, Schroeven M, et al., Ceramic Processing Techniques for Catalyst Design: Formation, Properties, and Catalytic Example of ZSM-5 on 3-Dimensional Fiber Deposition Support Structures, International Journal of Applied Ceramic Technology. 9: 902–910 (2012). https://doi.org/10.1111/j.1744-7402.2012.02781.x

Organización Mundial de la Salud (2024, 26 de febrero) https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance

Pal, S., Tak, Y. K., & Song, J. M. (2015). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-Negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720. https://doi.org/10.1128/aem.02218-06

Pulit-Prociak, J., & Banach, M. (2016). Silver nanoparticles a material of the future? Open Chemistry, 14(1), 76-91. https://doi.org/10.1515/chem-2016-0005

Rodríguez-Angeles, G. (2002). Principales características y diagnóstico de los grupos patógenos de Escherichia coli. Salud pública de México, 44(5), 464-475. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342002000500011

Shi, L., Zhao, Y., Zhang, X., Su, H., & Tan, T. (2008). Antibacterial and anti-mildew behavior of chitosan/Nano-TIO2 composite emulsion. Korean Journal of Chemical Engineering, 25(6), 1434-1438. https://doi.org/10.1007/s11814-008-0235-7

Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Retracted: Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18(22), 225103. https://doi.org/10.1088/0957-4484/18/22/225103

Zhao, G., Stevens, S.E. (1998). Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11, 27–32 https://doi.org/10.1023/A:1009253223055

Wattanawong, N., & Aht‐Ong, D. (2021). Antibacterial activity, thermal behavior, mechanical properties and biodegradability of silver zeolite/poly(butylene succinate) composite films. Polymer Degradation and Stability, 183, 109459. https://doi.org/10.1016/j.polymdegradstab.2020.109459