Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 10 No. 28 Enero - Abril 2024

PHOTOSYNTHESIS: A WONDERFUL, AMAZING AND CHALLENGING BIOPROCESS

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2024.10.28.1250
Submitted
January 18, 2024
Published
January 7, 2024

Abstract

Photosynthesis is the physical-chemistry phenomenon most amazing on our planet. It has marveled at humans since thousands of years ago. It is the most important biological process in nature, about which a lot is thought to be known; however, we do not know enough. Photosynthesis is made through big pigment-protein associations located in plant and algae organelles and some bacteria. Some of these complexes are known, but others are still under investigation. From a theoretical point of view, the investigations focus on different paths; some study the structural stability, spectra, and excitation of the different pigments. Other ones study the interactions, couplings, and electronic transfer from pigments to protein residues and from some super-complex protein to another super-complex protein. In this manuscript, the localization and structure of some photosynthetic systems of different organisms are explained, as are the quantum-chemistry studies that are being performed now.

References

Ben-Shem, A., Frolow, F., & Nelson, N. (2003). Crystal structure of plant photosystem I. Nature, 630-635. doi:10.1038/nature02200
Bryant, D. A. (2013). Green Bacteria: Chlorophyll Biosynthesis, Light-Harvesting, Reaction Centers, and Electron Transport. Encyclopedia of Biological Chemistry: Second Edition, 501-509. doi:10.1016/B978-0-12-378630-2.00159-6
Busch, A., & Hippler, M. (2011). The structure and function of eukaryotic photosystem I. Biochimica et Biophysica Acta- Bioenergetics, 1807, 864-877. doi:10.1016/j.bbabio.2010.09.009
cdadmin. (2019). Cd genomics blog. Obtenido de Chloroplast Fact Sheet: Definition, Structure, Genome, and Function: https://www.cd-genomics.com/blog/chloroplast-fact-sheet-definition-structure-genome-and-function/#:~:text=Structure%20of%20Chloroplasts&text=Chloroplasts%20are%20oval%2Dshaped%20and,dense%20fluid%20within%20the%20chloroplast.
Clayton, M. (2010). University of Wisconsin. Obtenido de Plant Teaching Collection: https://botit.botany.wisc.edu/
Croce, R., & van Amerongen, H. (2020). Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science, 369-379. doi:10.1126/science.aay2058
Drews, G., & Golecki, J. R. (1995). Structure, Molecular Organization, and Biosynthesis of Membranes of Purple Bacteria. Kliwer Academic Publishers, 231-257. doi:10.1007/0-306-47954-0_12
Gantt, E., Grabowski, B., & Cunningham Jr., F. X. (2003). Antenna Systems of Red Algae: Phycobilisomes with Photosystem II and Chlorophyll Complexes with Photosystem I. Kluwer Academic Publishers, 307-322. doi:10.1007/978-94-017-2087-8_10
Gibbons, D., Flanagan, K. J., Pounot, L., & Senge, M. O. (2019). Structure and conformation of photosynthetic pigments and related compounds. 15. Conformational analysis of chlorophyll derivatives–implications for hydroporphyrins in vivo. Photochemical & Photobiological Sciences, 18(6), 1479-1494.
Gros, O., Bisqué, L., Sadjan, M., Azede, C., Jean-Louis, P., & Guidi-Rontani, C. (2018). First description of a new uncultured purple sulfur bacterium colonizing marine mangrove sediment in the Caribbean: Halochromatium-like PSB from Guadeloupe. Comptes Rendus - Biologies, 341, 387-397. doi:10.1016/j.crvi.2018.07.001
Gruber, J. M., Malý, P., Krüger, T. P., & Grondelle, R. V. (2018). From isolated light-harvesting complexes to the thylakoid membrane: A single-molecule perspective. Nanophotonics, 7, 81-92. doi:10.1515/nanoph-2017-0014
Hu, X., Damjanovic´, A. D., Ritz, T., & Schulten, K. (1998). Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Computational Biomolecular Science, 95, 5935-5941. doi:10.1073/pnas.95.11.5935
Hu, X., Ritz, T., Damjanović, A., Autenrieth, F., & Schulten, K. (2002). Photosynthetic apparatus of purple bacteria. Quarterly Reviews of Biophysics, 35, 1-62. doi:10.1017/S0033583501003754
Jansson, S. (2013). Light-Harvesting Complex I and II: Pigments and Proteins The Higher Plant Light-Harvesting Antenna. Encyclopedia of Biological Chemistry, 726-728. doi:10.1016/B978-0-12-378630-2.00290-5
Lokstein, H., Renger, G., & Götze, J. P. (2021). Photosynthetic light-harvesting (antenna) complexes-structures and functions. Molecules, 26, 1-24. doi:10.3390/molecules26113378
Maity, S., Gelessus, A., Daskalakis, V., & Kleinekathöfer, U. (2019). On a chlorophyll-caroteinoid coupling in LHCII. Chemical Physics, 526, 110439.
McLaughlin, K. (2021). Plant Cell. (BD, Editor) Recuperado el 28 de Marzo de 2023, de Biology Dictionary: https://biologydictionary.net/plant-cell/
Mirkovic, T., Ostroumov, E. E., Anna, J. M., Van Grondelle, R., Govindjee, & Scholes, G. D. (2017). Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chemical Reviews, 117, 249-293. doi:10.1021/acs.chemrev.6b00002
Olson, J. (2004). The FMO protein. Photosynthesis Research, 80, 181-187.
Olson, J. M. (2013). Green Bacteria: The Light-Harvesting Chlorosome. Encyclopedia of Biological Chemistry: Second Edition, 513-516. doi:10.1016/B978-0-12-378630-2.00300-5
Orf, G. S., & Blankenship, R. E. (2013). Chlorosome antenna complexes from green photosynthetic bacteria. Photosynthesis Research, 116, 315-331. doi:10.1007/s11120-013-9869-3
Pan, X., Li, M., Wan, T., Wang, L., Jia, C., Hou, Z., Zhao, X., Zhang, J., Chang, W. (2011). Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nature Structural and Molecular Biology, 18, 309-315. doi:10.1038/nsmb.2008
Pan, X., Ma, J., Su, X., Cao, P., Chang, W., Liu, Z., Zhang, X., Li, M. (2018). Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science, 360, 1109-1113. doi:10.1126/science.aat1156
Park, S., Steen, C. J., Lyska, D., Fischer, A. L., Endelman, B., Iwai, M., Niyogi, K. K. & Fleming, G. R. (2019). Chlorophyll–carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. Proceedings of the National Academy of Sciences, 116(9), 3385-3390.
Shen, L., Huang, Z., Chang, S., Wang, W., Wang, J., Kuang, T., Han, G., Shen, J. R., Zhang, X. (2019). Structure of a C2S2M2N2-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 116, 21246-21255. doi:10.1073/pnas.1912462116
Sherman's, A. L. (2022). PURDUE UNIVERSITY. Obtenido de B. Why Study Cyanobacteria? https://www.bio.purdue.edu/lab/sherman/grand_challenge/why_study-Cyanobacteria.html
Sirohiwal, A., Berraud-Pache, R., Neese, F., Izsák, R., & Pantazis, D. A. (2020). Accurate computation of the absorption spectrum of chlorophyll a with pair natural orbital coupled cluster methods. The Journal of Physical Chemistry B, 124(40), 8761-8771.
Standfuss, J., Van Scheltinga, A. C., Lamborghini, M., & Kühlbrandt, W. (2005). Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO Journal, 24, 919-928. doi:10.1038/sj.emboj.7600585
Tani, K., Kanno, R., Kurosawa, K., Takaichi, S., Nagashima, K. V., Hall, M., Yu, L. J., Kimura, Y., Madigan, M. T., Mizoguchi, A., Humbel, B. M., Wang-Otomo, Z. Y. (2022). An LH1–RC photocomplex from an extremophilic phototroph provides insight into origins of two photosynthesis proteins. Communications Biology, 5, 1-11. doi:10.1038/s42003-022-04174-2
Yu, L. J., Suga, M., Wang-Otomo, Z. Y., & Shen, J. R. (2018). Structure of photosynthetic LH1-RC supercomplex at 1.9 Å resolution. Nature, 556, 209-213. doi:10.1038/s41586-018-0002-9