Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 10 No. 28 Enero - Abril 2024

THE GREAT CHEMICAL PUZZLE ACROSS THE OUR UNIVERSE: THE DARK CLOUD TMC-1

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2024.10.28.1243
Submitted
January 14, 2024
Published
January 7, 2024

Abstract

Abstract

A molecular cloud is a type of interstellar cloud characterized by a high density (~ 104 cm-3) and variable temperatures that range between 10 and 300 K. In molecular clouds, the photoionization, and photodissociation processes caused by UV radiation are inefficient. In this type of clouds, chemical processes play an important role in star formation, with gas phase processes and interactions between ice grains and gas occurring. The Taurus Molecular Cloud 1 (TMC-1) is a type of dark cloud and is the closest star-forming region to the Solar System. Numerous molecules have been detected in TMC-1 with atoms of C, N, O and S, with carbon chains and cyanopolynes being of great importance. Therefore, understanding the physical and chemical conditions in TMC-1 would help piece together the chemical puzzle about the formation of large molecules in the interstellar medium

References

Bergin, E.A., Snell, R.L., Goldsmith, P.F. (1996). Density Structure in Giant Molecular Cloud Cores. ApJ, 460, 343.
Cabezas, C., Tercero, B., Agúndez, M., Marcelino, N., Pardo, J.R., de Vicente, P., Cernicharo, J. (2021). Cumulene Carbenes in TMC-1: Astronomical Discovery of l-H2C5. A&A, 650, L9.
Ceccarelli, C., Viti, S., Balucani, N., Taquet, V. (2018). The Evolution of Grain Mantles and Silicate Dust Growth at High Redshift. MNRAS, 476, 1371-1383.
Cernicharo, J., Marcelino, N., Agúndez, M., Bermúdez, C., Cabezas, C., Tercero, B., Pardo, J.R. (2021). Discovery of HC4NC in TMC-1: A Study of the Isomers of HC3N, HC5N, and HC7N. A&A, 642, L8.
Charnley, S.B. (1997). Astronomical and Biochemical Origins and Search for Life in the Universe (1era ed.). Editrice Compositori, Bolonia, Italia.
Dobashi, K., Shimoikura, T., Ochiai, T., Nakamura, F., Kameno, S., Mizuno, I., Taniguchi, K. (2019). Discovery of CCS Velocity-coherent Substrutures in the Taurus Molecular Cloud 1. ApJ, 879, 88-96.
Elias, J.H. (1978) A Study of the Taurus Dark Cloud Complex. ApJ, 224, 857-872.
Fehper, O., Tóth, L.V., Ward-Thompson, D., Kirk, J., Kraus, A., Pelkonen, V.M., Pintér, S., Zahorecz, S. (2016). Structure and Stability in TMC-1: Analysis of NH3 Molecular Line and Herschel Continuum Data. A&A, 590, A75.
Harju, J., Winnberg, A., Wouterloot, J.G.A. (2000). The Distribution of OH in Taurus Molecular Cloud-1. Astron. Astrophys., 353, 1065-1073.
Hartquis, T.W., Williams, D.A., Viti, S. (2001). Chemical Constrains and Microstructure in TMC-1 Core D. A&A, 369, 605-610.
Indriolo, N. (2006). The Distribution of Cosmic-Ray Ionization Rates in Diffuse Molecular Clouds as Probed by H3+. Phyl. Trans. R. Soc. A, 370, 5142-5150.
Krumholz, M.R., McKee, C.F., Klein, R.I. (2005). The Formation of Stars by Gravitational Collapse rather than Competitive Accretion. Nature, 438, 332-334.
Landau, L. (1946). On the Vibrations of the Electronic Plasma. J. Phys., 10, 25-34.
Lindon, J., Tranter, G.E., Koopenaal, D. (2017). Encyclopedia of Spectroscopy and Spectrometry (3ra ed.), en: Interstellar Molecules, Spectroscopy of. Elsevier Ltd. Academic Press.
Markwick, A.J., Millar, T.J., Charnley, S.B. (2000). On the Abundance Gradients of Organic Molecules along the TMC-1 Ridge. ApJ, 535, 256-265.
Millar, T.J., Farquhar, P.R.A. Willacy, K. (1996). The UMIST Database for Astrochemistry 1995*. Astron. Astrophys. Suppl. Ser., 121, 139-185.
Müller, H.S.P. (2023). The Cologne Database for Molecular Spectroscopy: Molecules in Space. CDMS. Recuperado de: https://cdms.astro.uni-koeln.de/classic/molecules
Oishi, M., Kaifu, N. (1998). Chemical and Physical Evolution of Dark Clouds. Molecular Spectral Line Survey Toward TMC-1. Faraday Discuss., 109, 205-216.
Pratap, P., Dickens, J.E., Snell, R.L., Miralles, M.P., Bergin, E.A., Irvine, W.M., Schloerb, F.P. (1997). A Study of the Physics and Chemistry of TMC-1. ApJ, 486, 862-885.
Peng. R., Langer, W.D., Veluzamy, T., Kuiper, B.H., Levin, S. (1998). Low-Mass Clumps in TMC-1: Scaling Laws in the Small-Scale Regime. ApJ, 497, 842-849.
Pineda, J.L., Goldsmith, P.F., Chapman, N., Snell, R.L., Li, D., Cambrésy, L., Brunt, C. (2010). The Relation Between Gas and Dust in the Taurus Molecular Cloud. ApJ, 721, 686-708.
PSFC. (2023). Plasma Science and Fusion Center Massachusetts Institute of Technology. PSFC. Recuperado de: https://www.psfc.mit.edu/vision/what_is_plasma
Von Procházka, A.A., Millar, T.J. (2021). Species Cycling and the Enhancement of Ammonia in Prestellar Cores. MNRAS, 501,1228-1242.
Savić, I., Schlemmer, S., Gerlich, D. (2020). Formation of H3+ in Collisions of H2+ Studied in a Guided Ion Beam Instrument. ChemPhysChem, 21, 1429-1435.
Schroeder, J.W.R., Howes, G.G., Kletzing, C.A., Skiff, F., Carter, T.A., Vincena, S., Dorfman, S. (2021). Laboratory Measurements of the Physics of Auroral Electron Acceleration by Alfvén Waves. Nat. Commun., 12, 3103.
Suzuki, H., Yamamoto, S., Ohishi, M., Kaifu, N., Ishikawa, S., Hirahara, Y., Takano, S. (1992). A Survey of CCS, HC3N, HC5N, and NH3 toward Dark Cloud Cores and Their Production Chemistry. ApJ, 392, 551.
Yamamoto, S. (2014). Introduction to Astrochemistry: Chemical Evolution from Interstellar Clouds to Star and Planet Formation (1era ed.), en: 3. Basic Concepts for Gas-Phase Chemical Reactions. Springer Nature, Tokio, Japón.

Most read articles by the same author(s)