Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 10 No. 28 Enero - Abril 2024

MULTIDRUG-RESISTANT BACTERIA, THE COMING PANDEMIC?

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2024.10.28.1233
Submitted
December 27, 2023
Published
January 7, 2024

Abstract

The recent pandemic caused by the SARS-CoV2 virus has taught us several lessons; among them is the vulnerability of human beings as a species to the damage that can be caused by infectious agents.  Also, how with the responsible participation of society in conjunction with the public policies, the onslaught of these forces of evolution can be contained. A silent enemy that has been lurking and is constantly growing is bacteria, which due to their plasticity have a high capacity to acquire and develop mechanisms to evade the action of the drugs we use to control infections. This document presents the state-of-the-art of the main microbial agents that cause infections and that have been cataloged as a priority for international health agencies, and the panorama that represents the fact that they harbor resistance mechanisms for their containment. It also mentions regulatory aspects and the role of society to avoid the dissemination of multidrug-resistant bacteria.

References

Arizpe, A., Reveles, K. R., & Aitken, S. L. (2016). Regional variation in antibiotic prescribing among medicare part D enrollees, 2013. BMC Infectious Diseases, 16(1). https://doi.org/10.1186/s12879-016-2091-0

Carattoli, A. (2013). Plasmids and the spread of resistance. International Journal of Medical Microbiology. https://doi.org/10.1016/j.ijmm.2013.02.001

Castanon, J. I. R. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poultry Science, 86(11), 2466–2471. https://doi.org/10.3382/ps.2007-00249

Chang, C. Y., Huang, P. H., & Lu, P. L. (2022). The Resistance Mechanisms and Clinical Impact of Resistance to the Third Generation Cephalosporins in Species of Enterobacter cloacae Complex in Taiwan. Antibiotics, 11(9). https://doi.org/10.3390/antibiotics11091153

Companyó, R., Granados, M., Guiteras, J., & Prat, M. D. (2009). Antibiotics in food: Legislation and validation of analytical methodologies. Analytical and Bioanalytical Chemistry, 395(4), 877–891. https://doi.org/10.1007/s00216-009-2969-4

Deng, Y., Bao, X., Ji, L., Chen, L., Liu, J., Miao, J., Chen, D., Bian, H., Li, Y., & Yu, G. (2015). Resistance integrons: class 1, 2 and 3 integrons. Annals of Clinical Microbiology and Antimicrobials, 14, 45. https://doi.org/10.1186/s12941-015-0100-6

Denissen, J., Reyneke, B., Waso-Reyneke, M., Havenga, B., Barnard, T., Khan, S., & Khan, W. (2022). Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. International Journal of Hygiene and Environmental Health, 244. https://doi.org/10.1016/j.ijheh.2022.114006

Díaz-Jiménez, D., García-Meniño, I., Fernández, J., García, V., & Mora, A. (2020). Chicken and turkey meat: Consumer exposure to multidrug-resistant Enterobacteriaceae including mcr-carriers, uropathogenic E. coli and high-risk lineages such as ST131. International Journal of Food Microbiology, 331. https://doi.org/10.1016/j.ijfoodmicro.2020.108750

Dreser, A., Vázquez-Vélez, E., Treviño, S., & Wirtz, V. J. (2012). Regulation of antibiotic sales in Mexico: an analysis of printed media coverage and stakeholder participation. BMC Public Health, 12, 1051. https://doi.org/10.1186/1471-2458-12-1051

Fleece, M. E., Pholwat, S., Mathers, A. J., & Houpt, E. R. (2018). Molecular diagnosis of antimicrobial resistance in Escherichia coli. Expert Review of Molecular Diagnostics, 18(3), 207–217. https://doi.org/10.1080/14737159.2018.1439381

Flores Morales, C., Rocha Gracia, R. del C., Barrios Villa, E., Lozano Zarain, P., & Cortés Cortés, G. (2023). Staphylococcus aureus y Escherichia coli: dos Bacterias Multidrogorresistentes que Podemos Compartir con Nuestras Mascotas. INVURNUS, 17(1). https://doi.org/10.46588/invurnus.v17i1.98

Gupta, N., Angadi, K., & Jadhav, S. (2022). Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. In Infection and Drug Resistance (Vol. 15, pp. 7631–7650). Dove Medical Press Ltd. https://doi.org/10.2147/IDR.S386641

Han, Y. L., Wen, X. H., Zhao, W., Cao, X. S., Wen, J. X., Wang, J. R., Hu, Z. De, & Zheng, W. Q. (2022). Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1003783

Harmer, C. J., & Hall, R. M. (2016). IS26-Mediated Formation of Transposons Carrying Antibiotic Resistance Genes. MSphere, 1(2), 1–8. https://doi.org/10.1128/mSphere.00038-16.Editor

Iovleva, A., Mustapha, M. M., Griffith, M. P., Komarow, L., Luterbach, C., Evans, D. R., Cober, E., Richter, S. S., Rydell, K., Arias, C. A., Jacob, J. T., Salata, R. A., Satlin, M. J., Wong, D., Bonomo, R. A., Van Duin, D., Cooper, V. S., Van Tyne, D., & Doi, Y. (2022). Carbapenem-Resistant Acinetobacter baumannii in U.S. Hospitals: Diversification of Circulating Lineages and Antimicrobial Resistance. MBio, 13(2). https://doi.org/10.1128/mbio.02759-21

Jiang, Y., Ding, Y., Wei, Y., Jian, C., Liu, J., & Zeng, Z. (2022). Carbapenem-resistant Acinetobacter baumannii: A challenge in the intensive care unit. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1045206

Laborda, P., Martínez, J. L., & Hernando-Amado, S. (2022). Evolution of Habitat-Dependent Antibiotic Resistance in Pseudomonas aeruginosa. Microbiology Spectrum, 10(4). https://doi.org/10.1128/spectrum.00247-22

Lakhundi, S., & Zhang, K. (2018). Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clinical Microbiology Reviews, 31(4). https://doi.org/10.1128/CMR.00020-18

Lebreton, F., van Schaik, W., McGuire, A. M., Godfrey, P., Griggs, A., Mazumdar, V., Corander, J., Cheng, L., Saif, S., Young, S., Zeng, Q., Wortman, J., Birren, B., Willems, R. J. L., Earl, A. M., & Gilmore, M. S. (2013). Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio. https://doi.org/10.1128/mBio.00534-13

Lee, A. S., De Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4. https://doi.org/10.1038/nrdp.2018.33

Loeb, J. (2021a). Prescribing breaches are getting political. Veterinary Record, March-April, 203–203. https://doi.org/10.1002/vetr.310

Loeb, J. (2021b). Responsible use is not zero use. Veterinary Record, July, 49–49. https://doi.org/10.1002/vetr.732

Madden, D. E., McCarthy, K. L., Bell, S. C., Olagoke, O., Baird, T., Neill, J., Ramsay, K. A., Kidd, T. J., Stewart, A. G., Subedi, S., Choong, K., Fraser, T. A., Sarovich, D. S., & Price, E. P. (2022). Rapid fluoroquinolone resistance detection in Pseudomonas aeruginosa using mismatch amplification mutation assay-based real-time PCR. Journal of Medical Microbiology, 71(10). https://doi.org/10.1099/jmm.0.001593

Marturano, J. E., & Lowery, T. J. (2019). ESKAPE pathogens in bloodstream infections are associated with higher cost and mortality but can be predicted using diagnoses upon admission. Open Forum Infectious Diseases, 6(12). https://doi.org/10.1093/ofid/ofz503

Mazel, D. (2006). Integrons: Agents of bacterial evolution. Nature Reviews Microbiology. https://doi.org/10.1038/nrmicro1462

Mende, K., Akers, K. S., Tyner, S. D., Bennett, J. W., Simons, M. P., Blyth, D. M., Li, P., Stewart, L., & Tribble, D. R. (2022a). Multidrug-Resistant and Virulent Organisms Trauma Infections: Trauma Infectious Disease Outcomes Study Initiative. Military Medicine, 187, 42–51. https://doi.org/10.1093/milmed/usab131

Méndez-Moreno, E., Caporal-Hernandez, L., Mendez-Pfeiffer, P. A., Enciso-Martinez, Y., De la Rosa López, R., Valencia, D., Arenas-Hernández, M. M. P., Ballesteros-Monrreal, M. G., & Barrios-Villa, E. (2022). Characterization of Diarreaghenic Escherichia coli Strains Isolated from Healthy Donors, including a Triple Hybrid Strain. Antibiotics, 11(7). https://doi.org/10.3390/antibiotics11070833

Mills, J. P., & Marchaim, D. (2021). Multidrug-Resistant Gram-Negative Bacteria: Infection Prevention and Control Update. Infectious Disease Clinics of North America, 35(4), 969–994. https://doi.org/10.1016/j.idc.2021.08.001

Mlynarczyk-Bonikowska, B., Kowalewski, C., Krolak-Ulinska, A., & Marusza, W. (2022). Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. International Journal of Molecular Sciences, 23(15). https://doi.org/10.3390/ijms23158088

Mota-Bravo, L., Camps, M., Muñoz-Gutiérrez, I., Tatarenkov, A., Warner, C., Suarez, I., & Cortés-Cortés, G. (2023). Detection of Horizontal Gene Transfer Mediated by Natural Conjugative Plasmids in E. coli. Journal of Visualized Experiments : JoVE, 193. https://doi.org/10.3791/64523

Nucleo, E., Caltagirone, M., Marchetti, V. M., D’Angelo, R., Fogato, E., Confalonieri, M., Reboli, C., March, A., Sleghel, F., Soelva, G., Pagani, E., Aschbacher, R., Migliavacca, R., Pagani, L., Farina, C., Fazii, P., Luzzaro, F., & Montanera, P. G. (2018a). Colonization of long-term care facility residents in three Italian Provinces by multidrug-resistant bacteria. Antimicrobial Resistance and Infection Control, 7(1). https://doi.org/10.1186/s13756-018-0326-0

Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-Infective Therapy, 11(3), 297–308. https://doi.org/10.1586/eri.13.12

Pérez-Etayo, L., Berzosa, M., González, D., & Vitas, A. I. (2018). Prevalence of integrons and insertion sequences in esbl-producing E. coli isolated from different sources in Navarra, Spain. International Journal of Environmental Research and Public Health, 15(10). https://doi.org/10.3390/ijerph15102308

Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-01056-1

Ríos Ruy-Pérez, C. (2004). Legislación sobre Antibióticos en América Latina. In Oficina Sanitaria Panamericana, OPS. https://www3.paho.org/spanish/ad/dpc/cd/amr-legis.pdf

Rowe-Magnus, D. A., & Mazel, D. (2001). Integrons: Natural tools for bacterial genome evolution. Current Opinion in Microbiology. https://doi.org/10.1016/S1369-5274(00)00252-6

Ruekit, S., Srijan, A., Serichantalergs, O., Margulieux, K. R., Mc Gann, P., Mills, E. G., Stribling, W. C., Pimsawat, T., Kormanee, R., Nakornchai, S., Sakdinava, C., Sukhchat, P., Wojnarski, M., Demons, S. T., Crawford, J. M., Lertsethtakarn, P., & Swierczewski, B. E. (2022). Molecular characterization of multidrug-resistant ESKAPEE pathogens from clinical samples in Chonburi, Thailand (2017–2018). BMC Infectious Diseases, 22(1). https://doi.org/10.1186/s12879-022-07678-8

Shintani, M., Sanchez, Z. K., & Kimbara, K. (2015). Genomics of microbial plasmids: Classification and identification based on replication and transfer systems and host taxonomy. Frontiers in Microbiology, 6(MAR), 1–16. https://doi.org/10.3389/fmicb.2015.00242

Simonetti, O., Marasca, S., Candelora, M., Rizzetto, G., Radi, G., Molinelli, E., Brescini, L., Cirioni, O., & Offidani, A. (2022). Methicillin-resistant Staphylococcus aureus as a cause of chronic wound infections: Alternative strategies for management. AIMS Microbiology, 8(2), 125–137. https://doi.org/10.3934/microbiol.2022011

Smillie, C., Garcillan-Barcia, M. P., Francia, M. V., Rocha, E. P. C., & de la Cruz, F. (2010). Mobility of Plasmids. Microbiology and Molecular Biology Reviews. https://doi.org/10.1128/MMBR.00020-10

Tenover, F. C., Nicolau, D. P., & Gill, C. M. (2022). Carbapenemase-producing Pseudomonas aeruginosa –an emerging challenge. Emerging Microbes and Infections, 11(1), 811–814. https://doi.org/10.1080/22221751.2022.2048972

Tian, D., Liu, X., Chen, W., Zhou, Y., Hu, D., Wang, W., Wu, J., Mu, Q., & Jiang, X. (2022). Prevalence of hypervirulent and carbapenem-resistant Klebsiella pneumoniae under divergent evolutionary patterns. Emerging Microbes and Infections, 11(1), 1936–1949. https://doi.org/10.1080/22221751.2022.2103454

Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., Holland, T. L., & Fowler, V. G. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 17(4), 203–218. https://doi.org/10.1038/s41579-018-0147-4

Vakulenko, S. B., Golemi, D., Geryk, B., Suvorov, M., Knox, J. R., Mobashery, S., & Lerner, S. A. (2002). Mutational replacement of Leu-293 in the class C Enterobacter cloacae P99 β-lactamase confers increased MIC of cefepime. Antimicrobial Agents and Chemotherapy, 46(6), 1966–1970. https://doi.org/10.1128/AAC.46.6.1966-1970.2002

Wang, S., Ju, X., Dong, N., Li, R., Li, Y., Zhang, R., Huang, Y., & Zhou, H. (2022). Emergence of Mobilized Colistin Resistance Gene mcr-8.2 in Multidrug-Resistant Enterobacter cloacae Isolated from a Patient in China . Microbiology Spectrum, 10(4). https://doi.org/10.1128/spectrum.01217-22