Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 9 No.26 Mayo - Agosto 2023

MICROCELLULOSE A NATURAL POLYMER AVAILABLE TO EVERYONE

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2023.26.1095
Submitted
June 11, 2023
Published
May 1, 2023

Abstract

One of the natural polymers that have revolutionized history is cellulose, which is obtained from lignocellulosic
materials available in unlimited quantities in biomasses such as plants. Physically, cellulose has the form of long and
inelastic fibers superimposed in layers that provide the resistance to support the weight of the plant and chemically
cellulose is a linear homopolymer of D-glucopyranose units, joined by b(1-4) glycosidic bonds, its parallel chains are
aligned on their longitudinal axis and establish a large number of intermolecular hydrogen bridges, which gives rise
to highly structured microcellulose fibers. Therefore, the objective is the extraction of these micrometer-sized cellulosic
fibers due to their physicochemical characteristics. The most accessible method is by mechanical treatments
such as grinding, high pressures, defibrillations that break the cell walls into small fragments reducing the degree
of polymerization to access the fibers, followed by chemical methods that hydrolyze, saponify, dissolve or oxidize
the structure of the lignocellulosic components surrounding the cellulose. The results are the manufacture of paper,
from the biomass of trees or wood, in construction using insulators formed with microcellulose fibers. Other results
are the generation of thermoplastic materials, biopolymeric films and molded parts, seen in the food industry for
fresh food packaging and have been used to improve the mechanical properties of materials with polymeric matrix
to generate new materials in various areas.

 

 

References

Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. (2012). Bimetallic catalysts for upgrading of biomass to fuels and chemicals.
Chemical Society Reviews, 41: 8075-8098. (https://d3i71xaburhd42.cloudfront.net/f86f3bf7a54bd6a536737ecd685893ffd36b2011/
3-Figure2-1.png)
Baruah, J., Nath, B. K., Sharma, R., & Kumar, S. (2018). Recent Trends in the Pretreatment of Lignocellulosic Biomass for
Value-Added Products. Front. Energy Res. 6(141), 1–19. https://doi.org/10.3389/fenrg.2018.00141.
Di Donato, P., Poli, A., Taurisano, V., & Nicolaus, B. (2014). Polysaccharides Applications in Biology and Biotechnology
Polysaccharides from BioagroWaste New Biomolecules Life Polysaccharides. Polysaccharides, 2017(May), 1-19. https://
doi.org/10.1007/978-3-319-03751-6
Breznak, J. A., & Brune, A. (1994). Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev.
Entomol, 39, 453–487.
Budtova, T. (2019). Cellulose II aerogels: a review. Cellulose 26,(1). Springer Netherlands. https://doi.org/10.1007/s10570-
018-2189-1
Cardoso, E., & Cerecedo, M. (2008). Obtención de carboximetil celulosa usando Lemna como materia prima Revista
iberoamericana de. 20(1), 1–2. https://rieoei.org/historico/deloslectores/2652Espinosav2.pdf
Cevagraf Blog (2023). Cevagraf Imprenta. Cevagraf Coop. Recuperado de https://www.cevagraf.coop/blog/pasta-
mecanica-y-pasta-quimica/. (https://www.cevagraf.coop/blog/wp-content/uploads/sites/16/2014/05/desfibrador-
de-muela.jpg).
Chávez-Guerrero, L., Sepúlveda-Guzmán, S., Silva-Mendoza, J., Aguilar-Flores, C., & Pérez-Camacho, O. (2018).
Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions. Carbohydrate Polymers,
181(November), 642–649. https://doi.org/10.1016/j.carbpol.2017.11.100
Cruz, A. G., Scullin, C., Mu, C., Cheng, G., Stavila, V., Varanasi, P., Xu, D., Mentel, J., Chuang, Y. De, Simmons, B. A., &
Singh, S. (2013). Impact of high biomass loading on ionic liquid pretreatment. Biotechnology for Biofuels, 6(1). https://
doi.org/10.1186/1754-6834-6-52
Cuervo, L., Folch, J., & Quiroz, R. (2009). Lignocelulosa como fuente de azúcares para la producción de etanol. Bio
Tecnología, 13(3), 11–25. http://www.smbb.com.mx/revista/Revista_2009_3/Lignocelulosa.pdf
Ee, L. Y., Fong, S., & Li, Y. (2021). Recent advances in 3D printing of nanocellulose: structure, preparation, and application
prospects Nanoscale Advances. 3(5). https://doi.org/10.1039/d0na00408a
Farinas, C. S., Marconcini, J. M., & Mattoso, L. H. C. (2018). Enzymatic conversion of sugarcane lignocellulosic biomass
as a platform for the production of ethanol, enzymes and nanocellulose. Journal of Renewable Materials, 6(2),
203–216. https://doi.org/10.7569/JRM.2017.6341578
Flor, M., & Coral, C. (2019). CARACTERIZACIÓN QUÍMICA Y FÍSICA DEL BAMBÚ. Av. Cien. Ing. 10(4). 1-13.
Gonçalves, B. M. M., Camillo, M. de O., Oliveira, M. P., Carreira, L. G., Moulin, J. C., Neto, H. F., de Oliveira, B. F., Pereira,
A. C., & Monteiro, S. N. (2021). Surface treatments of coffee husk fiber waste for effective incorporation into polymer
biocomposites. Polymers, 13(19). https://doi.org/10.3390/polym13193428
Gong, J., Li, J., Xu, J., Xiang, Z., & Mo, L. (2017). Research on cellulose nanocrystals produced from cellulose sources
with various polymorphs. RSC Advances, 7(53), 33486–33493. https://doi.org/10.1039/c7ra06222b
Grilli, D., Egea, V., Lama, S. P., Carcaño, D., Allegretti, L., Escudero, M. S., & Arenas, G. N. (2015). Degradación y utilización
de la hemicelulosa contenida en especies forrajeras por Pseudobutyrivibrio ruminis y Pseudobutyrivibrio
xylanivorans. Revista de La Facultad de Ciencias Agrarias, 47(2), 231–243.
110
RD-ICUAP, Año 9, No. 26, 2023, pp. 102-111 AÑO 09, NÚMERO 26
BUAP
Hielscher Ultrasonics. (1999). Hielscher Ultrasonics Technology. Hielscher Ultrasonics GmbH. Recuperado de https://
www.hielscher.com/es/ultrasonic-homogenizers-for-liquid-processing-3.htm. ( https://www.hielscher.com/
wp-content/uploads/UIP1000hdT-ultrasonicator-dispersion-solid-liquid-250x333.jpg).
HRS Heat Exchangers. (2023). Heat Exchangers. HRS Group.Recuperado de https://www.hrs-heatexchangers.com/es/
noticias/la-hidrolisis-termica-impulsa-la-produccion-de-biogas/. (https://www.hrs-heatexchangers.com/wp-content/
uploads/2022/03/HRS-Unicus-Heat-Exchangers-Thermal-Hydrolysis.jpg).
Isogai, A., & Bergström, L. (2018). Preparation of cellulose nanofibers using green and sustainable chemistry. Current
Opinion in Green and Sustainable Chemistry, 12, 15–21. https://doi.org/10.1016/j.cogsc.2018.04.008
Jawaid, M., Alothman, O. Y., & Salit, M. S. (2017). Cellulosic Biocomposites: Potential Materials for Future. Green Energy
and Technology, 0(9783319493817), vii–viii. https://doi.org/10.1007/978-3-319-49382-4
Keller, S. (2019). Por qué el papel prospera en un mundo digital. ChemMatters, 1–4. https://www.acs.org/content/
dam/acsorg/education/resources/highschool/chemmatters/spanishtranslations/cm-april2019-celebrate-paper-spanish.
pdf
Lee, D., & Yoo, B. (2021). Cellulose derivatives agglomerated in a fluidized bed: Physical, rheological, and structural
properties. International Journal of Biological Macromolecules, 181, 232–240. https://doi.org/10.1016/j.ijbiomac.
2021.03.142
Liu, Y., Ahmed, S., Sameen, D. E., Wang, Y., Lu, R., Dai, J., Li, S., & Qin, W. (2021). A review of cellulose and its derivatives
in biopolymer-based for food packaging application. Trends in Food Science and Technology, 112(April), 532–546.
https://doi.org/10.1016/j.tifs.2021.04.016
MIcrofluidics Corporation, M.I. (2023). Microfluidizer Processors. IDEX: Materials Processing Techonologies. Recuperado
de https://www.microfluidics-mpt.com/microfluidizers/pilot-scale-m-110eh. (https://www.microfluidics-mpt.
com/hubfs/M-110EH-30-001-1-websize-1.jpg,).
McNamara, J. T., Morgan, J. L. W., & Zimmer, J. (2015). A molecular description of cellulose biosynthesis. Annual Review
of Biochemistry, 84, 895–921. https://doi.org/10.1146/annurev-biochem-060614-033930
Molina, A. B., & Flórez, C. J. M. (2020). Biopolímeros como sistemas de bioencapsulación. Researchgate.Net, August.
(https://doi.org/10.13140/RG.2.2.19521.17767/1. (https://www.researchgate.net/profile/Jm-Florez-Castillo/publication/
343452469/figure/fig4/AS:921262239014912@1596657442013/Figura-2123-Estructura-de-la-celulosa-fuente-autor_
W640.jpg).
Möller, J. (2014). Comparación de los métodos para la determinación de fibra en pienso y en los alimentos. Dedicated
Analytical Solutions, December, 1–5. https://docplayer.es/82653469-Comparacion-de-los-metodos-para-la-determinacion-
de-fibra-en-pienso-y-en-los-alimentos.html
Omran, A. A. B., Mohammed, A. A. B. A., Sapuan, S. M., Ilyas, R. A., Asyraf, M. R. M., Koloor, S. S. R., & Petrů, M. (2021).
Micro-and nanocellulose in polymer composite materials: A review. Polymers, 13(2), 1–30. https://doi.org/10.3390/
polym13020231
Ramos Cassellis, M. E., Luna Guevara, M. L., Campos Contreras, J. E., Salazar Rojas, V. M., Karina, A., Teutli, L., & Silva,
J. L. (2020). Evaluation of cellulase activity of fungi isolated from vanilla beans (Vanilla planifolia Jacks. ex Andrews).
International Journal of Applied Microbiology and Biotechnoloy research 8, 33–39. https://doi.org/10.33500/ijambr.
2020.08.004
Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61, 263–289. https://doi.org/10.1146/
annurev-arplant-042809-112315. (https://th.bing.com/th/id/OIP._CexRuPYWv-4nm0nuTeniwHaHz?pid=ImgDet&
w=156&h=164&c=7).
111
RD-ICUAP, Año 9, No. 26, 2023, pp. 102-111 AÑO 09, NÚMERO 26
BUAP
Sernaqué Auccahuasi, F. A., Huamán mogollón, L. del C., Hugo, P. C., & Chacón, M. E. (2020). Biodegradabilidad de
los bioplásticos elaborados a partir de cáscaras de Mangifera indica y Musa paradisiaca. Centro de Investigaciones
Agropecuarias, 47(4), 22–31. http://cagricola.uclv.edu.cu
Somerville, C. (2006). Cellulose synthesis in higher plants. Annual Review of Cell and Developmental Biology, 22,
53–78. https://doi.org/10.1146/annurev.cellbio.22.022206.160206
Suárez, S. J., Candela, A. M., Henao, J. A., & Bayona, O. L. (2019). EVALUACIÓN DEL DESEMPEÑO DEL PRETRATAMIENTO
CON PERÓXIDO DE HIDRÓGENO SOBRE BAGAZO DE CAÑA DE AZÚCAR PARA REMOCIÓN DE LIGNINA TT - Evaluation
of the performance of the preteretment with the hydrogen peroxide on sugar cane bagasse for removing
lignina. Iteckne, 16, 21–28. http://www.scielo.org.co/pdf/itec/v16n1/1692-1798-itec-16-01-21.pdf%0Ahttp://www.scielo.
org.co/scielo.php?script=sci_arttext&pid=S1692-17982019000100021&lang=es. (https://www.researchgate.net/
profile/Soleidy-Suarez-Forero/publication/334436704/figure/fig1/AS:780021350285312@1562982990163/ESTRUCTURA-
DE-LA-PARED-VEGETAL_W640.jpg).
Ten, E., & Vermerris, W. (2015). Recent developments in polymers derived from industrial lignin. Journal of Applied
Polymer Science, 132(24), 1–13. https://doi.org/10.1002/app.42069
Terinte, N., Ibbett, R., & Schuster, K. C. (2017). Overview on native cellulose and microcrystalline cellulose I structure
studied by X-ray diffraction ( WAXD ): Comparison between measurement techniques OVERVIEW ON NATIVE CELLULOSE
AND MICROCRYSTALLINE CELLULOSE I STRUCTURE STUDIED BY X-RAY DIFFRACTION (. January 2011.
Tian, C., Yi, J., Wu, Y., Wu, Q., Qing, Y., & Wang, L. (2016). Preparation of highly charged cellulose nanofibrils using
high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohydrate Polymers, 136,
485–492. https://doi.org/10.1016/j.carbpol.2015.09.055
Wyman, C. E. (1999). Technical Progress, Opportunities, and Commercial Challenges. 189–226.
Yousefian, H., & Rodrigue, D. (2017). Morphological, physical and mechanical properties of nanocrystalline cellulose
filled Nylon 6 foams. Journal of Cellular Plastics, 53(3), 253–271. https://doi.org/10.1177/0021955X16651241
Zambrano, G., Cedeño, C., Garcia, V., & Ulbio, A. (2021). Aprovechamiento de la cascarilla de arroz (Oryza sativa) para la
obtención de fibras de celulosa Use of rice husk (Oryza sativa) for the production of cellulose fibres Uso de casca de
arroz (Oryza sativa) para obtenção de fibras de celulose Cienciasde nat. Polo Del Conocimiento, 6(4), 415–437. https://
doi.org/10.23857/pc.v6i4.2572
Zeng, J., Tong, Z., Wang, L., Zhu, J. Y., & Ingram, L. (2014). Isolation and structural characterization of sugarcane bagasse
lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.
Bioresource Technology, 154, 274–281. https://doi.org/10.1016/j.biortech.2013.12.072
Zhao, D., Zhu, Y., Cheng, W., Chen, W., Wu, Y., & Yu, H. (2021). Cellulose-Based Flexible Functional Materials for Emerging
Intelligent Electronics. Advanced Materials, 33(28), 1–18. https://doi.org/10.1002/adma.202000619