Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 9 No.25 Enero - Abril 2023

CARBON CHAINS IN INTERSTELLAR MEDIUM: ¿THE LINKS OF ASTROCHEMISTRY?

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2023.25.1038
Submitted
February 13, 2023
Published
March 2, 2023

Abstract

The interstellar medium (ISM) is known as a dense and cold environment where star formation takes place. In the last 70 years, astronomers have discovered a large number of gas-phase molecules in space, among which carbon chains stand out as they play an important role in interstellar chemistry. The study of these molecules requires a wide variety of techniques, both for their astronomical detection and their characterization in the laboratory. Computational chemistry through ab initio methods or methods based on DFT constitutes a reliable and accurate alternative for the characterization of these molecules and can complement and even direct experimental investigations.

 

 

References

Alvarez, M. A., Bromm, V., & Shapiro, P. R. (2006). The H II region of the first star. The Astrophysical Journal, 639(2), 621. https://doi.org/10.1086/499578

Araki, M., Takano, S., Sakai, N., Yamamoto, S., Oyama, T., Kuze, N., & Tsukiyama, K. (2017). Long Carbon Chains in the Warm Carbon-chain-chemistry Source L1527: First Detection of C7H in Molecular Clouds. The Astrophysical Journal, 847(1), 51. https://doi.org/10.3847/1538-4357/aa8637

Bergeat, J., & Chevallier, L. (2005). The mass loss of C-rich giants. Astronomy & Astrophysics, 429(1), 235-246. https://doi.org/10.1051/0004-6361:20041280

Boulanger, F., Cox, P., & Jones, A. P. (2002). Dust in the interstellar medium. In Astronomie spatiale infrarouge, aujourd’hui et demain Infrared space astronomy, today and tomorrow (pp. 251-335). Berlin, Heidelberg: Springer Berlin Heidelberg. https://link.springer.com/chapter/10.1007/3-540-45573-6_7

Cami, J., Bernard-Salas, J., Peeters, E., & Malek, S. E. (2010). Detection of C60 and C70 in a young planetary nebula. Science, 329(5996), 1180-1182.
https://doi.org/10.1126/science.1192035

Cernicharo, J., & Guélin, M. (1996). Discovery of the C8H radical. Astronomy & Astrophysics, 309, L27-L30. https://adsabs.harvard.edu/full/1996A%26A...309L..27C

Doddipatla, S., Galimova, G. R., Wei, H., Thomas, A. M., He, C., Yang, Z., ... & Kaiser, R. I. (2021). Low-temperature gas-phase formation of indene in the interstellar medium. Science Advances, 7(1), eabd4044. https://doi.org/10.3847/1538-4357/ab6603

Elitzur, M., & Watson, W. D. (1980). Interstellar shocks and molecular CH/+/in diffuse clouds. The Astrophysical Journal, 236, 172-181.
https://adsabs.harvard.edu/full/1980ApJ...236..172E

Ferrière, K. M. (2001). The interstellar environment of our galaxy. Reviews of Modern Physics, 73(4), 1031. https://doi.org/10.1103/RevModPhys.73.1031

Freivogel, P., Grutter, M., Forney, D., & Maier, J. P. (1997). Infrared bands of mass-selected carbon chains Cn (n= 8− 12) and Cn−(n= 5− 10, 12) in neon matrices. Chemical Physics, 216(3), 401-406. https://doi.org/10.1016/S0301-0104(97)00038-4

Gottlieb, C. A., Gottlieb, E. W., & Thaddeus, P. (1986). Laboratory detection of the C5H radical. Astronomy & Astrophysics (ISSN 0004-6361), vol. 164, no. 1, Aug. 1986, p. L5, L6., 164, L5.
https://adsabs.harvard.edu/full/record/seri/A%2BA../0164/1986A%26A...164L...5G.html

Guélin, M., Cernicharo, J., Travers, M. J., McCarthy, M. C., Gottlieb, C. A., Thaddeus, P., ... & Yamamoto, S. (1997). Detection of a new linear carbon chain radical: C7H. Astronomy & Astrophysics, 317, L1-L4.
https://adsabs.harvard.edu/full/1997A%26A...317L...1G

Guélin, M., Green, S., & Thaddeus, P. (1978). Detection of the C4H radical toward IRC plus 10216. The Astrophysical Journal, 224, L27-L30.
https://adsabs.harvard.edu/full/1978ApJ...224L..27G

Herbst, E. (1995). Chemistry in the interstellar medium. Annual Review of Physical Chemistry, 46(1), 27-54. https://doi.org/10.1146/annurev.pc.46.100195.000331

Massó, H., Senent, M. L., Rosmus, P., & Hochlaf, M. (2006). Electronic structure calculations on the C4 cluster. The Journal of Chemical Physics, 124(23), 234304. https://doi.org/10.1063/1.2187972

Massó, H., Veryazov, V., Malmqvist, P. Å., Roos, B. O., & Senent, M. L. (2007). Ab initio characterization of C5. The Journal of Chemical Physics, 127(15), 154318. https://doi.org/10.1063/1.2759206

Qi, H., Picaud, S., Devel, M., Liang, E., & Wang, Z. (2018). Adsorption of organic molecules on onion-like carbons: insights on the formation of interstellar hydrocarbons. The Astrophysical Journal, 867(2), 133. https://doi.org/10.3847/1538-4357/aae4e4

Senent, M. L. (2004). Ab initio study of the torsional spectrum of glycolaldehyde. The Journal of Physical Chemistry A, 108(30), 6286-6293. https://doi.org/10.1021/jp0489121

Senent, M. L., Villa, M., Domínguez‐Gómez, R., & Fernández‐Clavero, A. (2005). Ab initio study of the far infrared spectrum of glycine. International Journal of Quantum Chemistry, 104(4), 551-561. https://doi.org/10.1002/qua.20629

Senent, M. L. (2009a). El rol fundamental de los métodos ab initio en Astroquímica. In Anales de la Real Sociedad Española de Química (No. 4, pp. 257-264). Real Sociedad Española de Química. ISSN 1575-3417, ISSN-e 2792-5250

Senent, M. L., & Hochlaf, M. (2009b). Ab initio characterization of C4−, C4H, and C4H−. The Astrophysical Journal, 708(2), 1452. https://doi.org/10.1088/0004-637X/708/2/1452

Senent, M. L., Massó, H., Hochlaf, M. (2007). Anharmonic spectroscopic study of the ground electronic state of various C4 radical isotopomers. The Astrophysical Journal, 670(2), 1510. https://doi.org/10.1086/522485

Shaw, A. M. (2021). Astrochemistry: The Physical Chemistry of the Universe. John Wiley & Sons. ISBN: 978119114734

Sociedad Española de Astronomía, SEA (2022). Medio Interestelar. https://www.sea-astronomia.es/glosario/medio-interestelar

Thaddeus, P., McCarthy, M. C., Travers, M. J., Gottlieb, C. A., & Chen, W. (1998). New carbon chains in the laboratory and in interstellar space. Faraday Discussions, 109, 121-135. https://doi.org/10.1039/A800286J

The Cologne Database for Molecular Spectroscopy (2022). Molecules in Space. 2022, de CDMS classic documentation. https://cdms.astro.uni-koeln.de/classic/molecules


van Dishoeck, E. F., & Black, J. H. (1986). Comprehensive models of diffuse interstellar clouds: Physical conditions and molecular abundances.
https://scholarlypublications.universiteitleiden.nl/handle/1887/1980

Zhang, K., Zhang, Y., & Shi, L. (2020). A review of linear carbon chains. Chinese Chemical Letters, 31(7), 1746-1756. https://doi.org/10.1016/j.cclet.2020.03.019

Most read articles by the same author(s)