LOS SISTEMAS DE DETECCIÓN DE QUORUM (QUORUM SENSING) O CÓMO “SOCIALIZAN” LAS BACTERIAS
DOI:
https://doi.org/10.32399/icuap.rdic.2448-5829.2022.23.817Resumen
Aunque por muchos años se pensó que era poco probable que las bacterias se comunicaran entre sí estableciendo un comportamiento “social”, numerosos estudios realizados en las tres últimas décadas revelaron que las bacterias si se comunican entre sí, y no solo eso, se pueden censar o contar. Los sistemas de comunicación que usan las bacterias para tal fin son llamados sistemas de Detección de Quorum (Quorum Sensing). En estos sistemas regularmente se usa una molécula señuelo conocida como autoinductor, la cual es producida individualmente por cada una de las células de la colonia. Después, el autoinductor es transportado al exterior de la célula donde se acumula progresivamente al aumentar el número de bacterias de la colonia. Cuando se alcanza una concentración alta del autoinductor, es detectado por unas moléculas receptoras especiales, que a su vez activan la expresión de genes que responden a la densidad celular de la colonia.
Citas
Aframian, N., & Eldar, A. (2020). A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. Annual Review of Microbiology, 74(1), 587–606. https://doi.org/10.1146/annurev-micro-012220-063740
Baltenneck, J., Reverchon, S., & Hommais, F. (2021). Quorum Sensing Regulation in Phytopathogenic Bacteria. Microorganisms, 9(2), 239. https://doi.org/10.3390/microorganisms9020239
Banerji, R., Kanojiya, P., & Saroj, S. D. (2020). Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Critical Reviews in Microbiology, 46(2), 136–146. https://doi.org/10.1080/1040841x.2020.1735991
Bassler, B. L. (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion in Microbiology, 2(6), 582–587. https://doi.org/10.1016/s1369-5274(99)00025-9
Bassler, B. L., Greenberg, E. P., & Stevens, A. M. (1997). Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. Journal of Bacteriology, 179(12), 4043–4045. https://doi.org/10.1128/jb.179.12.4043-4045.1997
Bivar Xavier, K. (2018). Bacterial interspecies quorum sensing in the mammalian gut microbiota. Comptes Rendus Biologies, 341(5), 297–299. https://doi.org/10.1016/j.crvi.2018.03.006
Bzdrenga, J., Daudé, D., Rémy, B., Jacquet, P., Plener, L., Elias, M., & Chabrière, E. (2017). Biotechnological applications of quorum quenching enzymes. Chemico-Biological Interactions, 267, 104–115. https://doi.org/10.1016/j.cbi.2016.05.028
Chadha, J., Harjai, K., & Chhibber, S. (2021). Revisiting the virulence hallmarks of Pseudomonas aeruginosa : a chronicle through the perspective of quorum sensing. Environmental Microbiology. https://doi.org/10.1111/1462-2920.15784
Duplantier, M., Lohou, E., & Sonnet, P. (2021). Quorum Sensing Inhibitors to Quench P. aeruginosa Pathogenicity. Pharmaceuticals, 14(12), 1262. https://doi.org/10.3390/ph14121262
Eberhard, A., Burlingame, A. L., Eberhard, C., Kenyon, G. L., Nealson, K. H., & Oppenheimer, N. J. (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry, 20(9), 2444–2449. https://doi.org/10.1021/bi00512a013
Engebrecht, J., Nealson, K., & Silverman, M. (1983). Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell, 32(3), 773–781. https://doi.org/10.1016/0092-8674(83)90063-6
Engebrecht, J., & Silverman, M. (1984). Identification of genes and gene products necessary for bacterial bioluminescence. Proceedings of the National Academy of Sciences, 81(13), 4154–4158. https://doi.org/10.1073/pnas.81.13.4154
Fan, Q., Wang, H., Mao, C., Li, J., Zhang, X., Grenier, D., Yi, L., & Wang, Y. (2022). Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. Journal of Agricultural and Food Chemistry, 70(2), 429–445. https://doi.org/10.1021/acs.jafc.1c04751
Grandclément, C., Tannières, M., Moréra, S., Dessaux, Y., & Faure, D. (2015). Quorum quenching: role in nature and applied developments. FEMS Microbiology Reviews, 40(1), 86–116. https://doi.org/10.1093/femsre/fuv038
Hawver, L. A., Jung, S. A., & Ng, W. L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews, 40(5), 738–752. https://doi.org/10.1093/femsre/fuw014
Kalia, V. C. (2014). Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Springer Publishing.
Kleerebezem, M., Quadri, L. E. N., Kuipers, O. P., & de Vos, W. M. (1997). Quorum sensing by peptide pheromones and two‐component signal‐transduction systems in Gram‐positive bacteria. Molecular Microbiology, 24(5), 895–904. https://doi.org/10.1046/j.1365-2958.1997.4251782.x
Miller, M. B., & Bassler, B. L. (2001). Quorum Sensing in Bacteria. Annual Review of Microbiology, 55(1), 165–199. https://doi.org/10.1146/annurev.micro.55.1.165
Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System. Journal of Bacteriology, 104(1), 313–322. https://doi.org/10.1128/jb.104.1.313-322.1970
Ng, W. L., & Bassler, B. L. (2009). Bacterial Quorum-Sensing Network Architectures. Annual Review of Genetics, 43(1), 197–222. https://doi.org/10.1146/annurev-genet-102108-134304
Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576–588. https://doi.org/10.1038/nrmicro.2016.89
Papon, N., & Stock, A. M. (2019). Two-component systems. Current Biology, 29(15), R724-R725. https://doi.org/10.1016/j.cub.2019.06.010
Patankar, A. V., & González, J. E. (2009). Orphan LuxR regulators of quorum sensing. FEMS Microbiology Reviews, 33(4), 739–756. https://doi.org/10.1111/j.1574-6976.2009.00163.x
Pollitt, E. J. G., West, S. A., Crusz, S. A., Burton-Chellew, M. N., & Diggle, S. P. (2014). Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus. Infection and Immunity, 82(3), 1045–1051. https://doi.org/10.1128/iai.01216-13
Prescott, R. D., & Decho, A. W. (2020). Flexibility and Adaptability of Quorum Sensing in Nature. Trends in Microbiology, 28(6), 436–444. https://doi.org/10.1016/j.tim.2019.12.004
Rémy, B., Mion, S., Plener, L., Elias, M., Chabrière, E., & Daudé, D. (2018). Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00203
Schaefer, A. L., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1996). Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proceedings of the National Academy of Sciences, 93(18), 9505–9509. https://doi.org/10.1073/pnas.93.18.9505
Shah, N., Gislason, A. S., Becker, M., Belmonte, M. F., Fernando, W. G. D., & de Kievit, T. R. (2020). Investigation of the quorum-sensing regulon of the biocontrol bacterium Pseudomonas chlororaphis strain PA23. PLOS ONE, 15(2), e0226232. https://doi.org/10.1371/journal.pone.0226232
Sikdar, R., & Elias, M. (2020). Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Review of Anti-infective Therapy, 18(12), 1221–1233. https://doi.org/10.1080/14787210.2020.1794815
Tripathi, S., Chandra, R., Purchase, D., Bilal, M., Mythili, R., & Yadav, S. (2022). Quorum sensing - a promising tool for degradation of industrial waste containing persistent organic pollutants. Environmental Pollution, 292, 118342. https://doi.org/10.1016/j.envpol.2021.118342
Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J., & Salmond, G. P. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiology Reviews, 25(4), 365–404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x
Xu, G. (2019). Evolution of LuxR solos in bacterial communication: receptors and signals. Biotechnology Letters, 42(2), 181–186. https://doi.org/10.1007/s10529-019-02763-6
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Definir aviso de derechos.
Los datos de este artículo, así como los detalles técnicos para la realización del experimento, se pueden compartir a solicitud directa con el autor de correspondencia.
Los datos personales facilitados por los autores a RD-ICUAP se usarán exclusivamente para los fines declarados por la misma, no estando disponibles para ningún otro propósito ni proporcionados a terceros.