Sensores de gas y su impacto en nuestro día a día
DOI:
https://doi.org/10.32399/icuap.rdic.2448-5829.2022.22.675Palabras clave:
Sensores, detección de gases, contaminación ambiental, detectores de CO2, alarmas de incendioResumen
En este trabajo se presenta un enfoque sobre la importancia de los sensores de gas en la industria, el sector salud y en el hogar. A lo largo de la historia el hombre ha tenido la necesidad de detectar gases, utilizando la nariz; ese sensor de gases que tenemos incorporado en nuestro cuerpo, pero más adelante fue inevitable desarrollar sensores que reemplazaran el sistema olfativo para evitar riesgos y aumentar la eficiencia de detección. Se presentan ejemplos de aplicación en cada uno de los sectores mencionados y se analiza la importancia en la vida del hombre. La ciencia y el desarrollo de tecnología han permitido avances en la producción de sensores que son empleados en el monitoreo de gases tóxicos, en sistemas de seguridad anti explosiones, como detectores ambientales, sistemas detectores de humo en nuestros hogares y recientemente en estrategias de detección del virus SARS-CoV-2 y reducción de riesgos de contagio en durante la pandemia COVID-19 mediante sensores de biomarcadores y monitoreo de concentraciones de CO2 respectivamente. Se hace evidente cómo los sensores de gas han ayudado a nuestra sociedad en su propósito de garantizar una mejor calidad de vida para quienes la integramos y se muestra una tendencia en el desarrollo de estos dispositivos que nos ofrece una vista al futuro próximo.
Citas
Aguilera-Benito, P., Piña-Ramirez, C., & Viccione, G. (2021). Analysis of air quality by ventilation in house in the framework of the COVID-19 pandemic: the case of Spain. (June). https://doi.org/10.20944/preprints202106.0604.v1
Ahrens, M., & Evarts, B. (2020). NFPA: Fire Loss in the United States During 2019. NFPA Research Report, (September), 1–11. Retrieved from https://www.nfpa.org/News-and-Research/Data-research-and-tools/US-Fire-Problem/Fire-loss-in-the-United-States
Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models. Endeavour, 40(3), 178-187. https://doi.org/10.1016/j.endeavour.2016.07.002
Burridge, H. C., Bhagat, R. K., Stettler, M. E. J., Kumar, P., De Mel, I., Demis, P., … Linden, P. F. (2021). The ventilation of buildings and other mitigating measures for COVID-19: A focus on wintertime. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477(2247), 1–62. https://doi.org/10.1098/rspa.2020.0855
Constantinoiu, I., & Viespe, C. (2020). Zno metal oxide semiconductor in surface acoustic wave sensors: A review. Sensors (Switzerland), 20(18), 1–20. https://doi.org/10.3390/s20185118
David, E. W. (1999). Semiconducting oxides as gas-sensitive resistors. Sensors and Actuators B: Chemical, 57(January), 1–16.
Devkota, J., Ohodnicki, P. R., & Greve, D. W. (2017). SAW sensors for chemical vapors and gases. Sensors (Switzerland), 17(4), 13–15. https://doi.org/10.3390/s17040801
Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B, 229, 206-217. https://doi.org/10.1016/j.mseb.2017.12.036
Feng, S., Farha, F., Li, Q., Wan, Y., Xu, Y., Zhang, T., & Ning, H. (2019). Review on smart gas sensing technology. Sensors (Switzerland), 19(17), 1–22. https://doi.org/10.3390/s19173760
Gaffney, E. M., Lim, K., & Minteer, S. D. (2020). Breath biosensing: using electrochemical enzymatic sensors for detection of biomarkers in human breath. Current Opinion in Electrochemistry, 23, 26–30. https://doi.org/10.1016/j.coelec.2020.02.014
Galstyan, V., Comini, E., Faglia, G., & Sberveglieri, G. (2013). TiO2 nanotubes: Recent advances in synthesis and gas sensing properties. Sensors (Switzerland), 13(11), 14813–14838. https://doi.org/10.3390/s131114813
Gautam, A., Verma, G., Qamar, S., & Shekhar, S. (2021). Vehicle Pollution Monitoring, Control and Challan System Using MQ2 Sensor Based on Internet of Things. Wireless Personal Communications, 116(2), 1071–1085. https://doi.org/10.1007/s11277-019-06936-4
Ghorbani, R., & Schmidt, F. M. (2017). Real-time breath gas analysis of CO and CO2 using an EC-QCL. Applied Physics B: Lasers and Optics, 123(5), 1–11. https://doi.org/10.1007/s00340-017-6715-x
Ibrahim, M. T., & Manap, H. (2021). Optimum Wavelength for Oxygen Detection using optical absorption. Journal of Physics: Conference Series, 1874(1). https://doi.org/10.1088/1742-6596/1874/1/012079
Leth, P., Gregersen, M., & Sabroe, S. (1998). Fatal residential fire accidents in the municipality of Copenhagen, 1991–1996. Preventive medicine, 27(3), 444-451. https://doi.org/10.1006/pmed.1998.0295Get
Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., Hu, P., Yang, C., Grundmann, M., Liu, X., & Fu, Y. (2019). Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons, 6(3), 470–506. https://doi.org/10.1039/c8mh01365a
Ligor, T. (2009). Analytical methods for breath investigation. Critical Reviews in Analytical Chemistry, 39(1), 2–12. https://doi.org/10.1080/10408340802569498
Lu, Y., Li, Y., Zhou, H., Lin, J., Zheng, Z., Xu, H., ... & Liu, L. (2021). Affordable measures to monitor and alarm nosocomial SARS‐CoV‐2 infection due to poor ventilation. Indoor air. https://doi.org/10.1111/ina.12899
Mahari, S., et al., eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. bioRxiv, 2020. https://doi.org/10.1101/2020.04.24.059204
Moitra, P., et al., Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS nano, 2020. https://doi.org/10.1021/acsnano.0c03822
Montaño Arias, N. M., & Sandoval Pérez, A. L. (2007). Contaminacion atmosferica y salud. Revista cientifica de America Latina y el Caribe, 14, 2–10.
Mumma, S. A. (2004). Transient occupancy ventilation by monitoring CO2. ASHRAE IAQ Applications, 5(1), 21-23.http://www.doas-radiant.psu.edu/IAQ_winter_04.pdf
Newman, J. D., Tigwell, L. J., Turner, A. P. F., & Warner, P. J. (2004). Biosensors: a clearer view. Biosensors. 2004‐The 8th World Congress on Biosensors
Ogawa, M., & Togawa, T. (2000, October). Monitoring daily activities and behaviors at home by using brief sensors. In 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No. 00EX451) (pp. 611-614). IEEE. https://doi.org/10.1109/MMB.2000.893858
Oh, E. H., Song, H. S., & Park, T. H. (2011). Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme and Microbial Technology, 48(6–7), 427–437. https://doi.org/10.1016/j.enzmictec.2011.04.003
Qian, H., Miao, T., Liu, L., Zheng, X., Luo, D., & Li, Y. (2021). Indoor transmission of SARS‐CoV‐2. Indoor Air, 31(3), 639-645 https://doi.org/10.1111/ina.12766
Qiu, G., et al., Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS nano, 2020. 14(5): p. 5268-5277. https://doi.org/10.1021/acsnano.0c02439
Schade, W., Reimer, V., Seipenbusch, M., & Willer, U. (2021). Experimental Investigation of Aerosol and CO2 Dispersion for Evaluation of COVID-19 Infection Risk in a Concert Hall. International Journal of Environmental Research and Public Health, 18(6), 3037. https://doi.org/10.3390/ijerph18063037
Schibuola, L., & Tambani, C. (2021). High energy efficiency ventilation to limit COVID-19 contagion in school environments. Energy and Buildings, 240, 110882. https://doi.org/10.1016/j.enbuild.2021.110882
Seo, G., et al., Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano, 2020. 14(4): p. 5135-5142. https://doi.org/10.1021/acsnano.0c02823
Shan, B., Broza, Y. Y., Li, W., Wang, Y., Wu, S., Liu, Z., … Haick, H. (2020). Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath. ACS Nano, 14(9), 12125–12132. https://doi.org/10.1021/acsnano.0c05657
Stetter, J. R., Penrose, W. R., & Yao, S. (2003). Sensors, Chemical Sensors, Electrochemical Sensors, and ECS. Journal of The Electrochemical Society, 150(2), S11. https://doi.org/10.1149/1.1539051
Wang, G., Yang, S., Cao, L., Jin, P., Zeng, X., Zhang, X., & Wei, J. (2021). Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coordination Chemistry Reviews, 445, 214086. https://doi.org/10.1016/j.ccr.2021.214086
Xuan, J., Zhao, G., Sun, M., Jia, F., Wang, X., Zhou, T., Yin, G., & Liu, B. (2020). Low-temperature operating ZnO-based NO2sensors: A review. RSC Advances, 10(65), 39786–39807. https://doi.org/10.1039/d0ra07328h
Yamazoe, N., Sakai, G., & Shimanoe, K. (2003). Oxide semiconductor gas sensors. Catalysis Surveys from Asia, 7(1), 63–75. https://doi.org/10.1023/A:1023436725457
Yang, B., Myung, N. V., & Tran, T. T. (2021). 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. Advanced Electronic Materials, 7(9), 1–37. https://doi.org/10.1002/aelm.202100271
Yang, D., Gopal, R. A., Lkhagvaa, T., & Choi, D. (2021). Metal-oxide gas sensors for exhaled-breath analysis: A review. Measurement Science and Technology, 32(10). https://doi.org/10.1088/1361-6501/ac03e
Publicado
Cómo citar
Número
Sección
Licencia
Definir aviso de derechos.
Los datos de este artículo, así como los detalles técnicos para la realización del experimento, se pueden compartir a solicitud directa con el autor de correspondencia.
Los datos personales facilitados por los autores a RD-ICUAP se usarán exclusivamente para los fines declarados por la misma, no estando disponibles para ningún otro propósito ni proporcionados a terceros.