Biobutanol como combustible alternativo: un panorama actual del potencial de thermoanaerobacterium thermosaccharolyticum
DOI:
https://doi.org/10.32399/icuap.rdic.2448-5829.2020.17.220Palabras clave:
thermoanaerobacterium thermosaccharolyticum, biobutanol, biomasa lignocelulósica, biocombustibleResumen
La quema de combustibles fósiles ha provocado varios conflictos en todo el mundo que han repercutido en el calentamiento global. Existe una alternativa que sustituye el uso de estas fuentes: los biocombustibles. El biobutanol se ha convertido en un punto de referencia para la industria biotecnológica por sus ventajas frente a otros biocombustibles. Sin embargo, existen ciertas limitaciones en su producción como son: la composición de la materia prima, los tratamientos costosos y la complejidad de las vías metabólicas. En este artículo exponemos una visión general sobre el potencial actual de Thermoanaerobacterium thermosaccharolyticum TG57 como microorganismo con una eficiente capacidad de producción de biobutanol.
Citas
Arora, R., Behera, S., & Kumar, S. (2015). Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective. Renewable and Sustainable Energy Reviews, 51, 699–717. https://doi.org/10.1016/j.rser.2015.06.050
Bhandiwad, A., Guseva, A., & Lynd, L. (2013). Metabolic Engineering of Thermoanaerobacterium thermosaccharolyticum for Increased n-Butanol Production. Advances in Microbiology, 03(01), 46–51. https://doi.org/10.4236/aim.2013.31007
Bhatia, S. K., Kim, S.-H., Yoon, J.-J., & Yang, Y.-H. (2017). Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 148(3), 1142–1156. https://doi.org/10.1016/j.enconman.2017.06.073
Bhatia, S. K., & Yang, Y. H. (2017). Microbial production of volatile fatty acids: current status and future perspectives. Reviews in Environmental Science and Biotechnology, 16(2), 327–345. https://doi.org/10.1007/s11157-017-9431-4
Correa, D. F., Beyer, H. L., Fargione, J. E., Hill, J. D., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2019). Towards the implementation of sustainable biofuel production systems. Renewable and Sustainable Energy Reviews, 107(May 2018), 250–263. https://doi.org/10.1016/j.rser.2019.03.005
García, V., Päkkilä, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews, 15(2), 964–980. https://doi.org/10.1016/j.rser.2010.11.008
Goyal, L., & Khanna, S. (2019). Recent Advances in Microbial Production of Butanol as a Biofuel. International Journal of Applied Sciences and Biotechnology, 7(2), 130–152. https://doi.org/10.3126/ijasbt.v7i2.24630
Gronenberg, L. S., Marcheschi, R. J., & Liao, J. C. (2013). Next generation biofuel engineering in prokaryotes. Current Opinion in Chemical Biology, 17(3), 462–471. https://doi.org/10.1016/j.cbpa.2013.03.037
Hon, S., Olson, D. G., Holwerda, E. K., Lanahan, A. A., Murphy, S. J. L., Maloney, M. I., … Lynd, L. R. (2017). The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Metabolic Engineering, 42, 175–184. https://doi.org/10.1016/j.ymben.2017.06.011
Huzir, N. M., Aziz, M. M. A., Ismail, S. B., Abdullah, B., Mahmood, N. A. N., Umor, N. A., & Syed Muhammad, S. A. F. (2018). Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. Renewable and Sustainable Energy Reviews, 94, 476–485. https://doi.org/10.1016/j.rser.2018.06.036
Ibrahim, M. F., Kim, S. W., & Abd-Aziz, S. (2018). Advanced bioprocessing strategies for biobutanol production from biomass. Renewable and Sustainable Energy Reviews, 91, 1192–1204. https://doi.org/10.1016/j.rser.2018.04.060
Jiang, Y., Lv, Y., Wu, R., Sui, Y., Chen, C., Xin, F., … Jiang, M. (2019). Current status and perspectives on biobutanol production using lignocellulosic feedstocks. Bioresource Technology Reports, 7(March), 100245. https://doi.org/10.1016/j.biteb.2019.100245
Jiang, Y., Xin, F., Lu, J., Dong, W., Zhang, W., Zhang, M., … Jiang, M. (2017). State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresource Technology, 245, 1498–1506. https://doi.org/10.1016/j.biortech.2017.05.142
Kumar, M., & Gayen, K. (2011). Developments in biobutanol production: New insights. Applied Energy, 88(6), 1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055
Li, T., Zhang, C., Yang, K.-L., & He, J. (2018). Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol. Science Advances, 4(3), e1701475. https://doi.org/10.1126/sciadv.1701475
Natalense, J., & Zouain, D. (2013). Technology roadmapping for renewable fuels: Case of biobutanol in Brazil. Journal of Technology Management and Innovation, 8(4), 143–152. https://doi.org/10.4067/s0718-27242013000500012
No, S.-Y. (2016). Application of biobutanol in advanced CI engines – A review. Fuel, 183, 641–658. https://doi.org/10.1016/j.fuel.2016.06.121
Procentese, A., Raganati, F., Olivieri, G., Russo, M. E., de la Feld, M., & Marzocchella, A. (2017). Renewable feedstocks for biobutanol production by fermentation. New Biotechnology, 39, 135–140. https://doi.org/10.1016/j.nbt.2016.10.010
Pugazhendhi, A., Mathimani, T., Varjani, S., Rene, E. R., Kumar, G., Kim, S.-H., … Yoon, J.-J. (2019). Biobutanol as a promising liquid fuel for the future - recent updates and perspectives. Fuel, 253, 637–646. https://doi.org/10.1016/j.fuel.2019.04.139
Raganati, F., Procentese, A., Olivieri, G., Salatino, P., & Marzocchella, A. (2014). Biobutanol production from hexose and pentose sugars. Chemical Engineering Transactions, 38, 193–198. https://doi.org/10.3303/CET1438033
Ranjan, A., & Moholkar, V. S. (2012). Biobutanol: science, engineering, and economics. International Journal of Energy Research, 36(3), 277–323. https://doi.org/10.1002/er.1948
Rathour, R. K., Ahuja, V., Bhatia, R. K., & Bhatt, A. K. (2018). Biobutanol: New era of biofuels. International Journal of Energy Research, 42(15), 4532–4545. https://doi.org/10.1002/er.4180
Selbmann, K. (2015). Bio-, Agro- or even Social Fuels: Discourse Dynamics on Biofuels in Germany. Environmental Values, 24(4), 483–510. https://doi.org/10.3197/096327115X14345368709943
Visioli, L. J., Alves, E. A., Trindade, A., Kuhn, R. C., Schwaab, M., & Mazutti, M. A. (2015). Evaluation of biobutanol production by Clostridium beijerinckii NRRL B-592 using sweet sorghum as carbon source. Ciência Rural, 45(9), 1707–1712. https://doi.org/10.1590/0103-8478cr20140520
Wei, N., Quarterman, J., Kim, S. R., Cate, J. H. D., & Jin, Y.-S. (2013). Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nature Communications, 4(1), 2580. https://doi.org/10.1038/ncomms3580
Wilches, Á. (2011). Biocombustibles: ¿Son realmente amigables con el ambiente? Revista Colombiana de Bioética, 6, 89–102. Retrieved from http://www.redalyc.org/articulo.oa?id=189219032007
Xin, F., Dong, W., Zhang, W., Ma, J., & Jiang, M. (2019). Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing. Trends in Biotechnology, 37(2), 167–180. https://doi.org/10.1016/j.tibtech.2018.08.007
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Definir aviso de derechos.
Los datos de este artículo, así como los detalles técnicos para la realización del experimento, se pueden compartir a solicitud directa con el autor de correspondencia.
Los datos personales facilitados por los autores a RD-ICUAP se usarán exclusivamente para los fines declarados por la misma, no estando disponibles para ningún otro propósito ni proporcionados a terceros.