GRAFENO: UNO DE LOS MATERIALES MÁS VERSÁTILES EN LA CIENCIA Y LA TECNOLOGÍA
DOI:
https://doi.org/10.32399/icuap.rdic.2448-5829.2025.33.1636Palabras clave:
Grafeno, Nanotecnología, Nanomaterial bidimensional, Síntesis, CienciaResumen
El grafeno, una lámina bidimensional (2D) compuesta por una única capa de átomos de carbono, se ha consolidado como uno de los materiales más prometedores del siglo XXI gracias a sus propiedades excepcionales. Desde su descubrimiento en 2004, ha sentado las bases para el estudio de toda la familia de materiales 2D e inspirado una intensa investigación orientada al desarrollo de aplicaciones científicas y tecnológicas innovadoras. Este artículo describe los principales métodos de síntesis del grafeno, agrupados en enfoques descendentes y ascendentes, resaltando la técnica de deposición química de vapor (CVD) como la opción más prometedora para producirlo a gran escala y de alta calidad. Además, se presentan las propiedades estructurales que explican su comportamiento sorprendente, así como sus numerosas aplicaciones actuales, destacando su potencial en campos como la electrónica, la energía, la medicina, el medio ambiente y las tecnologías de la información y la comunicación. El grafeno no solo ha impulsado la era de los materiales 2D, sino que continúa potenciando el desarrollo de tecnologías más sostenibles, eficientes y limpias.
Citas
Aditivo para concreto—Graphenemex. (2023, April 11). https://www.graphenemex.com/aplicaciones/aditivo-para-concreto/
An, J., Zhao, X., Zhang, Y., Liu, M., Yuan, J., Sun, X., Zhang, Z., Wang, B., Li, S., & Li, D. (2022). Perspectives of 2D Materials for Optoelectronic Integration. Advanced Functional Materials, 32(14), 2110119. https://doi.org/10.1002/adfm.202110119
Awate, P. P., Barve, S. B., Pesode, P., & Shinde, S. S. (2023). Graphene/Al6061 nanocomposite for aerospace and automobile application. Materials Today: Proceedings, S2214785323039469. https://doi.org/10.1016/j.matpr.2023.07.075
Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z. X., Loh, K. P., & Tang, D. Y. (2009). Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials, 19(19), 3077–3083. https://doi.org/10.1002/adfm.200901007
Bhuyan, Md. S. A., Uddin, Md. N., Islam, Md. M., Bipasha, F. A., & Hossain, S. S. (2016). Synthesis of graphene. International Nano Letters, 6(2), 65–83. https://doi.org/10.1007/s40089-015-0176-1
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
Graphenemex, E. (2022, July 28). La revolución del grafeno en la industria automotriz: Innovación en cuidado y protección de vehículos - Graphenemex. https://www.graphenemex.com/soluciones-con-grafeno/grafeno-exfoliado/grafeno/industria-automotriz-eg/la-revolucion-del-grafeno-en-la-industria-automotriz-innovacion-en-cuidado-y-proteccion-de-vehiculos/
Graphenemex, E. (2024a, July 24). Innovaciones en Tecnologías del Agua—Graphenemex. https://www.graphenemex.com/soluciones-con-grafeno/grafeno-exfoliado/grafeno/energias-limpias/innovaciones-en-tecnologias-del-agua/
Graphenemex, E. (2024b, September 24). El Impacto del Grafeno en la Industria del Plástico: - Graphenemex. https://www.graphenemex.com/soluciones-con-grafeno/oxido-de-grafeno/sostenibilidad-og/el-impacto-del-grafeno-en-la-industria-del-plastico/
Han, T.-H., Kim, H., Kwon, S.-J., & Lee, T.-W. (2017). Graphene-based flexible electronic devices. Materials Science and Engineering: R: Reports, 118, 1–43. https://doi.org/10.1016/j.mser.2017.05.001
Hasan, M., Arezoomandan, S., Condori, H., & Sensale-Rodriguez, B. (2016). Graphene terahertz devices for communications applications. Nano Communication Networks, 10, 68–78. https://doi.org/10.1016/j.nancom.2016.07.011
Hou, J., Shao, Y., Ellis, M. W., Moore, R. B., & Yi, B. (2011). Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 13(34), 15384. https://doi.org/10.1039/c1cp21915d
Huawei Achieves Major Breakthrough in Graphene-Assisted High Temperature Li-ion Batteries—Huawei press center. (n.d.). Huawei. Retrieved June 11, 2025, from https://www.huawei.com/en/news/2016/12/Graphene-Assisted-Li-ion-Batteries
Huawei Community. (n.d.). Consumer.Huawei.Com. Retrieved June 11, 2025, from https://consumer.huawei.com/en/community/details/Tech-Class-15-Full-introduction-on-HUAWEI-SuperCool-technology-of-Mate-20-X/topicId_17567/
Jia, S., Sun, H. D., Du, J. H., Zhang, Z. K., Zhang, D. D., Ma, L. P., Chen, J. S., Ma, D. G., Cheng, H. M., & Ren, W. C. (2016). Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes. Nanoscale, 8(20), 10714–10723. https://doi.org/10.1039/C6NR01649A
Lu, G., Ocola, L. E., & Chen, J. (2009). Gas detection using low-temperature reduced graphene oxide sheets. Applied Physics Letters, 94(8), 083111. https://doi.org/10.1063/1.3086896
Martínez-López, A. L., Cruz-Bueno, J. J., Trejo-Hernández, R., Rocha-Robledo, A. K. S., de-Luna-Bugallo, A., Kudriavtsev, Y., García-Salgado, G., Casallas-Moreno, Y. L., & Mendoza-Álvarez, J. G. (2024). Impact of graphene as 2D interlayer on the growth of GaAs by CSVT on Si (100) and GaAs (100) substrates. Materials Science in Semiconductor Processing, 181, 108605. https://doi.org/10.1016/j.mssp.2024.108605
Mohamed Noor, A., Amanina Mohd Zin, F., Hasenan, N., & Seong Wei, L. (2025). Graphene-Based Nanomaterials for Drug Delivery. In S. K. Swain (Ed.), Carbon Based Nanomaterials for Drug Delivery (pp. 229–260). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-8086-0_8
Moon, J. S., Curtis, D., Hu, M., Wong, D., McGuire, C., Campbell, P. M., Jernigan, G., Tedesco, J. L., VanMil, B., Myers-Ward, R., Eddy, C., & Gaskill, D. K. (2009). Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates. IEEE Electron Device Letters, 30(6), 650–652. https://doi.org/10.1109/LED.2009.2020699
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896
Parvez, K., Yang, S., Feng, X., & Müllen, K. (2015). Exfoliation of graphene via wet chemical routes. Synthetic Metals, 210, 123–132. https://doi.org/10.1016/j.synthmet.2015.07.014
Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S., & Mishra, M. (2018). Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry, 8(2), 123–137. https://doi.org/10.1007/s40097-018-0265-6
Research, B. I. S. (n.d.). Graphene Composites: The Super-Material Shaping a Smarter Future. Retrieved June 11, 2025, from https://blog.marketresearch.com/graphene-composites-the-super-material-shaping-a-smarter-future
Saeed, M., Alshammari, Y., Majeed, S. A., & Al-Nasrallah, E. (2020). Chemical Vapour Deposition of Graphene—Synthesis, Characterisation, and Applications: A Review. Molecules, 25(17), 3856. https://doi.org/10.3390/molecules25173856
Santos, T. F., Souza, D. F. S., Santos, E. V., Carvalho, B. R., & Nascimento, J. H. O. (2025). Graphene and graphene quantum dots applied to batteries and supercapacitors. Nano Trends, 9, 100077. https://doi.org/10.1016/j.nwnano.2025.100077
Sengupta, J., & Hussain, C. M. (2022). Graphene-Induced Performance Enhancement of Batteries, Touch Screens, Transparent Memory, and Integrated Circuits: A Critical Review on a Decade of Developments. Nanomaterials, 12(18), 3146. https://doi.org/10.3390/nano12183146
Subramaniam, R. T., Kasi, R., Bashir, S., & Kumar, S. S. A. (Eds.). (2023). Graphene: Fabrication, Properties and Applications. Springer Nature. https://doi.org/10.1007/978-981-99-1206-3
Suk, M. E., & Aluru, N. R. (2010). Water Transport through Ultrathin Graphene. The Journal of Physical Chemistry Letters, 1(10), 1590–1594. https://doi.org/10.1021/jz100240r
The Nobel Prize in Physics 2010. (n.d.). NobelPrize.Org. Retrieved July 1, 2025, from https://www.nobelprize.org/prizes/physics/2010/summary/
Ullah, S., Yang, X., Ta, H. Q., Hasan, M., Bachmatiuk, A., Tokarska, K., Trzebicka, B., Fu, L., & Rummeli, M. H. (2021). Graphene transfer methods: A review. Nano Research, 14(11), 3756–3772. https://doi.org/10.1007/s12274-021-3345-8
Xia, F., Mueller, T., Lin, Y., Valdes-Garcia, A., & Avouris, P. (2009). Ultrafast graphene photodetector. Nature Nanotechnology, 4(12), 839–843. https://doi.org/10.1038/nnano.2009.292
Xiang, Z., Dai, Q., Chen, J., & Dai, L. (2016). Edge Functionalization of Graphene and Two‐Dimensional Covalent Organic Polymers for Energy Conversion and Storage. Advanced Materials, 28(29), 6253–6261. https://doi.org/10.1002/adma.201505788
Yasmeen, R., Khan, F. S., Nisa, W. U., Saleem, A. R., Awais, M., Jameel, M., Dara, R. N., & Khan, M. (2025). Enhanced water purification by using graphene oxide nano-membranes: A novel approach for mitigating industrial pollutant. Carbon Trends, 19, 100486. https://doi.org/10.1016/j.cartre.2025.100486
Zhang, T. (2022). New Materials. In T. Zhang, Graphene From Theory to Applications (pp. 105–127). Springer Singapore. https://doi.org/10.1007/978-981-16-4589-1_7
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 RD-ICUAP

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Definir aviso de derechos.
Los datos de este artículo, así como los detalles técnicos para la realización del experimento, se pueden compartir a solicitud directa con el autor de correspondencia.
Los datos personales facilitados por los autores a RD-ICUAP se usarán exclusivamente para los fines declarados por la misma, no estando disponibles para ningún otro propósito ni proporcionados a terceros.