EJE INTESTINO-PULMÓN COMO FACTOR DE COMPLICACIÓN EN EL COVID-19

Autores/as

DOI:

https://doi.org/10.32399/icuap.rdic.2448-5829.2025.32.1591

Palabras clave:

Eje Intestino-Pulmón, COVID-19, Microbiota intestinal, Nutrición

Resumen

A finales del año 2019 surgió en Wuhan, China, un virus que marca un precedente histórico y la necesidad de estudiarlo en diversas áreas de la salud. El virus SARS-CoV-2 es responsable de la enfermedad conocida como COVID-19, la cual incluye manifestaciones clínicas como dolor de cabeza, fiebre, tos, cansancio, dolor de garganta, anosmia, ageusia, e incluso náuseas, vómito y diarreas, hasta cuadros más complejos como el desarrollo del síndrome de dificultad respiratoria aguda (SDRA), e incluso la muerte. (Seyed Hosseini et al., 2020) (Kang & Xu, 2020). Un estado nutricional óptimo y una microbiota intestinal en eubiosis tienen importantes repercusiones sobre el sistema inmunológico, ya que ayudan a modular la respuesta inmune y a prevenir cuadros patológicos relevantes. Por lo que, estudiar la relación entre el eje intestino-pulmón, microbiota intestinal y la nutrición resulta de amplio interés para comprobar la influencia y repercusiones que pueden estar debilitando la respuesta inmunológica. (Dumas et al., 2018). Por lo anterior, es fundamental ofrecer información basada en evidencia científica que describa la conexión del eje intestino-pulmón con el desarrollo de la enfermedad de COVID-19. Además de la importancia de la nutrición en la modulación y respuesta inmunológica frente a la infección.

Biografía del autor/a

Marian Ortiz-Hernández , Laboratorio de Nutrición Clínica, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla

 

Guadalupe Soto-Rodríguez, Laboratorio de Nutrición Clínica, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla

 

Citas

Abt, M. C., Osborne, L. C., Monticelli, L. A., Doering, T. A., Alenghat, T., Sonnenberg, G. F., Paley, M. A., Antenus, M., Williams, K. L., Erikson, J., Wherry, E. J., & Artis, D. (2012). Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity, 37(1), 158–170. https://doi.org/10.1016/j.immuni.2012.04.011

Agarwal, A., Chen, A., Ravindran, N., To, C., & Thuluvath, P. J. (2020). Gastrointestinal and Liver Manifestations of COVID-19. Journal of Clinical and Experimental Hepatology, 10(3), 263–265. https://doi.org/10.1016/j.jceh.2020.03.001

Akour, A. (2020). Probiotics and COVID-19: is there any link? Letters in Applied Microbiology, 71(3), 229–234. https://doi.org/10.1111/lam.13334

Álvarez, J., Lallena, S., & Bernal, M. (2020). Nutrition and the COVID-19 pandemic. Medicine (Spain), 13(23), 1311–1321. https://doi.org/10.1016/j.med.2020.12.013

Ayyanna, R., Ankaiah, D., & Arul, V. (2018). Anti-inflammatory and Antioxidant Properties of Probiotic Bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar Albino Rats. Frontiers in Microbiology, 9(December), 1–13. https://doi.org/10.3389/fmicb.2018.03063.

Britton, G. J., Chen-Liaw, A., Cossarini, F., Livanos, A. E., Spindler, M. P., Plitt, T., Eggers, J., Mogno, I., Gonzalez-Reiche, A. S., Siu, S., Tankelevich, M., Grinspan, L. T., Dixon, R. E., Jha, D., van de Guchte, A., Khan, Z., Martinez-Delgado, G., Amanat, F., Hoagland, D. A., … Faith, J. J. (2021). Limited intestinal inflammation despite diarrhea, fecal viral RNA and SARS-CoV-2-specific IgA in patients with acute COVID-19. Scientific Reports, 11(1), 13308. https://doi.org/10.1038/s41598-021-92740-9

Busnadiego, I., Fernbach, S., Pohl, M. O., Karakus, U., Huber, M., Trkola, A., Stertz, S., & Hale, B. G. (2020). Antiviral activity of type i, ii, and iii interferons counterbalances ace2 inducibility and restricts sars-cov-2. MBio, 11(5), 1–10. https://doi.org/10.1128/mBio.01928-20

Calder, P. C. (2021). Nutrition and immunity: lessons for COVID-19. Nutrition and Diabetes, 11(1), 1–8. https://doi.org/10.1038/s41387-021-00165-0

Calder, P. C., Carr, A. C., Gombart, A. F., & Eggersdorfer, M. (2020). Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. nutrients 2020, 12, 1181”. Nutrients, 12(8), 1–3. https://doi.org/10.3390/nu12082326

de Oliveira, G. L. V., Oliveira, C. N. S., Pinzan, C. F., de Salis, L. V. V., & Cardoso, C. R. de B. (2021). Microbiota Modulation of the Gut-Lung Axis in COVID-19. Frontiers in Immunology, 12(February). https://doi.org/10.3389/fimmu.2021.635471

Delgado-Gonzalez, P., Gonzalez-Villarreal, C. A., Roacho-Perez, J. A., Quiroz-Reyes, A. G., Islas, J. F., Delgado-Gallegos, J. L., Arellanos-Soto, D., Galan-Huerta, K. A., & Garza-Treviño, E. N. (2021). Inflammatory effect on the gastrointestinal system associated with COVID-19. World Journal of Gastroenterology, 27(26), 4160–4171. https://doi.org/10.3748/wjg.v27.i26.4160

Dumas, A., Bernard, L., Poquet, Y., Lugo-Villarino, G., & Neyrolles, O. (2018). The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cellular Microbiology, 20(12), 1–9. https://doi.org/10.1111/cmi.12966

Galmés, S., Serra, F., & Palou, A. (2020). Current state of evidence: Influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients, 12(9), 1–33. https://doi.org/10.3390/nu12092738

Ghoshal, U. C., Ghoshal, U., & Dhiman, R. K. (2020). Gastrointestinal and Hepatic Involvement in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Review. Journal of Clinical and Experimental Hepatology, 10(6), 622–628. https://doi.org/10.1016/j.jceh.2020.06.002

Giron, L. B., Dweep, H., Yin, X., Wang, H., Damra, M., Goldman, A. R., Gorman, N., Palmer, C. S., Tang, H. Y., Shaikh, M. W., Forsyth, C. B., Balk, R. A., Zilberstein, N. F., Liu, Q., Kossenkov, A., Keshavarzian, A., Landay, A., & Abdel-Mohsen, M. (2021). Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Frontiers in Immunology, 12(June), 1–16. https://doi.org/10.3389/fimmu.2021.686240

Iddir, M., Brito, A., Dingeo, G., Del Campo, S. S. F., Samouda, H., La Frano, M. R., & Bohn, T. (2020). Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the covid-19 crisis. Nutrients, 12(6), 1–43. https://doi.org/10.3390/nu12061562

Jafar, N., Edriss, H., & Nugent, K. (2016). The effect of short-term hyperglycemia on the innate immune system. American Journal of the Medical Sciences, 351(2), 201–211. https://doi.org/10.1016/j.amjms.2015.11.011

Johnson, S. D., Olwenyi, O. A., Bhyravbhatla, N., Thurman, M., Pandey, K., Klug, E. A., Johnston, M., Dyavar, S. R., Acharya, A., Podany, A. T., Fletcher, C. V., Mohan, M., Singh, K., & Byrareddy, S. N. (2021). Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis. World Journal of Gastroenterology, 27(29), 4763–4783. https://doi.org/10.3748/wjg.v27.i29.4763

Kang, Y., & Xu, S. (2020). Comprehensive overview of COVID-19 based on current evidence. Dermatologic Therapy, 33(5), 1–8. https://doi.org/10.1111/dth.13525

Kiousi, D. E., Karapetsas, A., Karolidou, K., Panayiotidis, M. I., Pappa, A., & Galanis, A. (2019). Probiotics in extraintestinal diseases: Current trends and new directions. Nutrients, 11(4), 1–26. https://doi.org/10.3390/nu11040788

Konturek, P. C. (2021). Wie wirkt sich COVID-19 auf die intestinale Mikrobiota aus? MMW - Fortschritte Der Medizin, 163(S5), 17–20. https://doi.org/10.1007/s15006-021-0200-5

Neri-Numa, I. A., Arruda, H. S., Geraldi, M. V., Maróstica Júnior, M. R., & Pastore, G. M. (2020). Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Current Opinion in Food Science, 33, 98–107. https://doi.org/10.1016/j.cofs.2020.03.004

Pan, L., Mu, M., Yang, P., Sun, Y., Wang, R., Yan, J., Li, P., Hu, B., Wang, J., Hu, C., Jin, Y., Niu, X., Ping, R., Du, Y., Li, T., Xu, G., Hu, Q., & Tu, L. (2020). Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. American Journal of Gastroenterology, 115(5), 766–773. https://doi.org/10.14309/ajg.0000000000000620

Pecora, F., Persico, F., Argentiero, A., Neglia, C., & Esposito, S. (2020). The role of micronutrients in support of the immune response against viral infections. Nutrients, 12(10), 1–45. https://doi.org/10.3390/nu12103198

Pham, M. T., Yang, A. J., Kao, M. S., Gankhuyag, U., Zayabaatar, E., Jin, S. L. C., & Huang, C. M. (2021). Gut probiotic Lactobacillus rhamnosus attenuates PDE4B-mediated interleukin-6 induced by SARS-CoV-2 membrane glycoprotein. Journal of Nutritional Biochemistry, 98, 108821. https://doi.org/10.1016/j.jnutbio.2021.108821

Qing Ye, MD, Bili Wang, Ting Zhang, Jian Xu, Shiqiang Shang, M. (2020). The mechanism and treatment of gastrointestinal symptoms in patients with COVID-19. REVIEW Inflammation, Immunity, Fibrosis, and Infection.

Sencio, V., Machado, M. G., & Trottein, F. (2021). The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunology, 14(2), 296–304. https://doi.org/10.1038/s41385-020-00361-8

Seyed Hosseini, E., Riahi Kashani, N., Nikzad, H., Azadbakht, J., Hassani Bafrani, H., & Haddad Kashani, H. (2020). The novel coronavirus Disease-2019 (COVID-19): Mechanism of action, detection and recent therapeutic strategies. Virology, 551(August), 1–9. https://doi.org/10.1016/j.virol.2020.08.011

Sies, H., & Parnham, M. J. (2020). Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radical Biology and Medicine, 156(June), 107–112. https://doi.org/10.1016/j.freeradbiomed.2020.06.032

Singer, P., Blaser, A. R., Berger, M. M., Alhazzani, W., Calder, P. C., Casaer, M. P., Hiesmayr, M., Mayer, K., Montejo, J. C., Pichard, C., Preiser, J. C., van Zanten, A. R. H., Oczkowski, S., Szczeklik, W., & Bischoff, S. C. (2019). ESPEN guideline on clinical nutrition in the intensive care unit. Clinical Nutrition, 38(1), 48–79. https://doi.org/10.1016/j.clnu.2018.08.037

Skrajnowska, D., Brumer, M., Kankowska, S., Matysek, M., Miazio, N., & Bobrowska-Korczak, B. (2021). Covid 19: Diet composition and health. Nutrients, 13(9). https://doi.org/10.3390/nu13092980

Sociedad Iberoamericana de Microbiota, P. y P. (2024). Anales de Microbiota, Probióticos y Prebióticos. 35–39. https://semipyp.es/wp-content/uploads/2024/02/AMPP-5-1.pdf

Stachowska, E., Folwarski, M., Jamioł-Milc, D., Maciejewska, D., & Skonieczna-żydecka, K. (2020). Nutritional support in coronavirus 2019 disease. Medicina (Lithuania), 56(6), 1–14. https://doi.org/10.3390/medicina56060289

Steed, A. L., Christophi, G. P., Kaiko, G. E., Sun, L., Goodwin, V. M., Jain, U., Esaulova, E., Artyomov, M. N., Morales, D. J., Holtzman, M. J., Boon, A. C. M., Lenschow, D. J., & Stappenbeck, T. S. (2017). The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science, 357(6350), 498–502. https://doi.org/10.1126/science.aam5336

Trompette, A., Gollwitzer, E. S., Pattaroni, C., Lopez-Mejia, I. C., Riva, E., Pernot, J., Ubags, N., Fajas, L., Nicod, L. P., & Marsland, B. J. (2018). Dietary Fiber Confers Protection against Flu by Shaping Ly6c− Patrolling Monocyte Hematopoiesis and CD8+ T Cell Metabolism. Immunity, 48(5), 992-1005.e8. https://doi.org/10.1016/j.immuni.2018.04.022

Uzzan, M., Corcos, O., Martin, J. C., Treton, X., & Bouhnik, Y. (2020). Why is SARS-CoV-2 infection more severe in obese men ? The gut lymphatics – Lung axis hypothesis. January.

Viana, S. D., Nunes, S., & Reis, F. (2020). ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities – Role of gut microbiota dysbiosis. Ageing Research Reviews, 62(May), 101123. https://doi.org/10.1016/j.arr.2020.101123

Villena, J., & Kitazawa, H. (2020). The Modulation of Mucosal Antiviral Immunity by Immunobiotics: Could They Offer Any Benefit in the SARS-CoV-2 Pandemic? Frontiers in Physiology, 11(June), 1–20. https://doi.org/10.3389/fphys.2020.00699

Wypych, T. P., Wickramasinghe, L. C., & Marsland, B. J. (2019). The influence of the microbiome on respiratory health. In Nature Immunology (Vol. 20, Issue 10, pp. 1279–1290). Nature Publishing Group. https://doi.org/10.1038/s41590-019-0451-9

Zhang, Q., Hu, J., Feng, J. W., Hu, X. T., Wang, T., Gong, W. X., Huang, K., Guo, Y. X., Zou, Z., Lin, X., Zhou, R., Yuan, Y. Q., Zhang, A. D., Wei, H., Cao, G., Liu, C., Chen, L. L., & Jin, M. L. (2020). Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection. Genome Biology, 21(1). https://doi.org/10.1186/s13059-020-02007-1

Descargas

Publicado

2025-09-05

Cómo citar

Ortiz-Hernández , M. ., & Soto-Rodríguez, G. . (2025). EJE INTESTINO-PULMÓN COMO FACTOR DE COMPLICACIÓN EN EL COVID-19. RD-ICUAP, 11(32). https://doi.org/10.32399/icuap.rdic.2448-5829.2025.32.1591

Número

Sección

Artículos