EDICIÓN GENÉTICA PARA TERAPIA CONTRA EL CÁNCER
DOI:
https://doi.org/10.32399/icuap.rdic.2448-5829.2025.31.1544Palabras clave:
Inmunoterapia del cáncer, CRISPR-Cas, Cas9, Cáncer, Genética, InmunidadResumen
En la última década, los sistemas CRISPR-Cas han sido una herramienta líder de edición de genes, beneficiándose de los descubrimientos sin precedentes de la investigación bacteriana básica. Sin embargo, la complejidad de los sistemas CRISPR va mucho más allá del ámbito original de la defensa inmunitaria. Los sistemas CRISPR-Cas están implicados en influir en la expresión de genes fisiológicos y de virulencia y, posteriormente, en alterar la formación de biopelícula bacteriana, la resistencia a los fármacos, la potencia invasiva y las características fisiológicas propias de las bacterias. El sistema CRISPR-Cas ha permitido la realización de terapias génicas y celulares, la búsqueda de nuevas dianas farmacológicas, una nueva generación de modelos de enfermedades, el esclarecimiento de los mecanismos de resistencia a los fármacos y la comprobación de la eficacia de estos.
Citas
Afolabi, L. O., Adeshakin, A. O., Sani, M. M., Bi, J. & Wan, X. (2019). Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9. Immunology, 158(2), 63-69. https://doi.org/10.1111/imm.13094.
Albayrak, G., Konac, E., Ugras Dikmen, A. & Bilen, C. Y. (2018). FOXA1 knock-out via CRISPR/Cas9 altered Casp-9, Bax, CCND1, CDK4, and fibronectin expressions in LNCaP cells. Experimental Biology and Medicine, 243(12), 990-994. https://doi.org/10.1177/1535370218791797.
Aregger M, Xing K, Gonatopoulos-Pournatzis T. Application of CHyMErA Cas9-Cas12a combinatorial genome-editing platform for genetic interaction mapping and gene fragment deletion screening. Nat Protoc. 2021;16(10):4722–65. https:// doi. org/ 10. 1038/ s41596- 021- 00595-1.
Ashrafizadeh M, Paskeh MDA, Mirzaei S, et al. (2022).Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res. ;41(1):105. Published 2022 Mar 22. doi:10.1186/s13046-022-02293-.
Asmamaw, M., & Zawdie, B. (2021). Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics : targets & therapy, 15, 353–361. https://doi.org/10.2147/BTT.S326422.
Azamjah N, Soltan-Zadeh Y, Zayeri F. Global Trend of Breast Cancer Mortality Rate: A 25-Year Study. Asian Pac J Cancer Prev. 2019 Jul 1;20(7):2015-2020. doi: 10.31557/APJCP.2019.20.7.2015. PMID: 31350959; PMCID: PMC6745227.
Briceño Morales, X., & Briceño Morales, C. (2022). Implicaciones de la pandemia en la radioterapia para el cáncer de mama. Radioterapia hipofraccionada [Implications of the pandemic in radiotherapy for breast cancer. Hypofractionated radiation therapy]. Revista De Senología Y Patología Mamaria, 35(2), 109–116. https://doi.org/10.1016/j.senol.2021.12.008.
Bernheim A, Bikard D, Touchon M, Rocha EPC. Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Nucleic Acids Res. 2020;48(2):748–60. https:// doi. org/ 10. 1093/ nar/ gkz10 91.
Chaudhary M, Mukherjee TK, Singh R, Gupta M, Goyal S, Singhal P, et al.(2022) CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update. Mol Biol Rep.. https:// doi. org/ 10. 1007/s11033- 022- 07523-w.
D'Angelo, R. S. M., Osorio, J. D. Q., Flor, A. T., & Escalante, A. C. P. (2020). Las técnicas crispr/cas9 aplicadas al mejoramiento genético humano: Un diálogo biotecnológico, antropológico-filosófico y jurídico. Cuadernos de Bioética, 31(103).
Debela, D. T., Muzazu, S. G., Heraro, K. D., Ndalama, M. T., Mesele, B. W., Haile, D. C., Kitui, S. K., & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE open medicine, 9: 1-10. https://doi.org/10.1177/20503121211034366
Diario Oficial de la Federación, (2008). Decreto por el que se expide la Ley General para el Control del Tabaco; y deroga y reforma diversas disposiciones de la Ley General de Salud. https://docs.mexico.justia.com/estatales/puebla/ley-general-para-el-control-del-tabaco.pdf
Elliott EK, Haupt LM, Griffiths LR. Mini review: genome and transcriptome editing using CRISPR-cas systems for hematological malignancy gene therapy. Transgenic Res. 2021;30(2):129–41. https:// doi. org/ 10.1007/ s11248- 020- 00232-9.
Finck, A., Gill, S. I. & June, C. H. (2020). Cancer immunotherapy comes of age and looks for maturity. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17140-5
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–789. https://doi.org/10.1002/IJC.33588
Gao, Q., Dong, X., Xu, Q., Zhu, L., Wang, F., Hou, Y. & Chao, C. (2019). Therapeutic potential of CRISPR/Cas9 gene editing in engineered T‐cell therapy. Cancer Medicine, 8(9), 4254-4264. https://doi.org/10.1002/cam4.2257
Gunaydin, G., Gedik, M. E., & Ayan, S. (2021). Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Frontiers in chemistry, 9, 686303. https://doi.org/10.3389/fchem.2021.686303
GBD 2019 Colorectal Cancer Collaborators (2022). Global, regional, and national burden of colorectal cancer and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. The lancet. Gastroenterology & hepatology, 7(7), 627–647. https://doi.org/10.1016/S2468-1253(22)00044-9
Hausman D. M. (2019). What Is Cancer?. Perspectives in biology and medicine, 62(4), 778–784. https://doi.org/10.1353/pbm.2019.0046
Instituto Mexicano del Seguro Social. (24 de octubre de 2022). Epidemiología del cáncer de mama. https://www.gob.mx/imss/articulos/epidemiologia-del-cancer-de-mama-318014
Instituto Nacional de Estadística y Geografía. (17 de octubre de 2022). Estadísticas a propósito del día internacional de la lucha contra el cáncer de mama (19 de octubre). Comunicado de prensa núm. 591/22. https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2022/EAP_CANMAMA22.pdf
Jackson M., Marks L., May G.H.W. & Wilson J.B.. (2018). The genetic basis of the disease. Essays Biochem. 62 (5): 643–723. https://doi: 10.1042/ebc20170053.
Juan, M., & Rives, S. (2020). Inmunoterapia CAR-T en hemato-oncología pediátrica… presente y futuro [CAR-T immunotherapy in pediatric hemato-oncology… present and future]. Anales de pediatría, 93(1), 1–3. https://doi.org/10.1016/j.anpedi.2020.04.023
Kaligotla, V. S. A., Jasti, T. & Kandra, P. (2021). CRISPR/Cas9 in cancer: An attempt to the present trends and future prospects. Biotechnology and Applied Biochemistry, 69(3), 1238-1251. https://doi.org/10.1002/bab.2200
Li, F., Aljahdali, I., & Ling, X. (2019). Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study?. Journal of experimental & clinical cancer research : CR, 38(1), 368. https://doi.org/10.1186/s13046-019-1362-1.
Loureiro, A., & da Silva, G. J. (2019). CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Antibiotics (Basel, Switzerland), 8(1), 18. https://doi.org/10.3390/antibiotics8010018
Mani I. (2021). CRISPR-Cas9 for treating hereditary diseases. Progress in molecular biology and translational science, 181, 165–183. https://doi.org/10.1016/bs.pmbts.2021.01.017
Mazzone, P. J., Silvestri, G. A., Souter, L. H., Caverly, T. J., Kanne, J. P., Katki, H. A., Wiener, R. S., & Detterbeck, F. C. (2021). Screening for Lung Cancer: CHEST Guideline and Expert Panel Report. Chest, 160(5), e427–e494. https://doi.org/10.1016/j.chest.2021.06.063
National Cancer Institute. (10 de mayo de 2022). Common cancer types. https://www.cancer.gov/types/common-cancers
NgNidhi, S., Anand, U., Oleksak, P., Tripathi, P., Lal, J. A., Thomas, G., Kuca, K., & Tripathi, V. (2021). Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. International journal of molecular sciences, 22(7), 3327. https://doi.org/10.3390/ijms22073327
Nguyen, M., & Osipo, C. (2022). Targeting Breast Cancer Stem Cells Using Naturally Occurring Phytoestrogens. International journal of molecular sciences, 23(12), 6813. https://doi.org/10.3390/ijms23126813
Martinez Oliva, B. G. (2020). Crispr, una herramienta para editar genomas. Gaceta Médica Boliviana, 43(2), 179-183. https://doi.org/10.47993/gmb.v43i2.66
Mizuki, H., Shimoyama, Y., Ishikawa, T., & Sasaki, M. (2022). A genomic sequence of the type II-A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system in Mycoplasma salivarium strain ATCC 29803. Journal of oral microbiology, 14(1), 2008153. https://doi.org/10.1080/20002297.2021.2008153.
Organización Mundial de la Salud. (2 de febrero de 2022). Cáncer. https://www.who.int/es/news-room/fact-sheets/detail/cancer
Organización Mundial de la Salud. (2009). El Convenio Marco de la OMS para el Control del Tabaco: un panorama general. https://www.who.int/fctc/WHO_FCTC_summary_January2015_SP.pdf
Padilla-Ratgoza, N., Monroy-Torres, R., Sandoval-Salazar, C, et. al. (2020)- Cancer prevention programmes in México: are we doing enough?. ecancer. 14(1). https://doi.org/10.3332/ecancer.2020.997.
Pucci, C., Martinelli, C., & Ciofani, G. (2019). Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience, 13, 961. https://doi.org/10.3332/ecancer.2019.961.
Ran, F., Hsu, P., (2013). Wright, J. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281–2308. https://doi.org/10.1038/nprot.2013.143
Ratan, Z. A., Son, Y. J., Haidere, M. F., Uddin, B. M. M., Yusuf, M. A., Zaman, S. B., ... & Cho, J. Y. (2019). CRISPR-Cas9: a promising genetic engineering approach in cancer research. Therapeutic advances in medical oncology, 10, 1758834018755089.https://doi.org/10.1177/1758834018755089
Rehman U, Parveen N, Sheikh A, et al. Polymeric nanoparticles-siRNA as an emerging nano-polyplexes against ovarian cancer. (2022). Colloids Surf B Biointerfaces. ;218:112766.https://doi.org/10.1016/J.COLSURFB.2022.112766.
Sánchez C., (2013). Conociendo y comprendiendo la célula cancerosa: fisiopatología del cáncer. Revista Médica Clínica Las Condes, 24(4), 553-562. https://doi.org/10.1016/S0716-8640(13)70659-X
Sekhoacha, M., Riet, K., Motloung, P., Gumenku, L., Adegoke, A., & Mashele, S. (2022). Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules (Basel, Switzerland), 27(17), 5730. https://doi.org/10.3390/molecules27175730
Secretaría de Salud. (2020). Cáncer. https://salud.edomex.gob.mx/salud/cancer
Siegel R., Miller K., Fuchs H. & Jemal A. (2022). Cáncer statics, 2022.CA Cancer J Clin, 72(1), 7-33. https://doi.org/10.3322/caac.21708.
Singh V, Sheikh A, Abourehab MAS, et al. Dostarlimab as a miracle drug: rising hope against cancer treatment. Biosensors (Basel). 2022;12(8):617. https://doi.org/10.3390/BIOS1208061.
Tang, N., Ning, Q., Wang, Z., Tao, Y., Zhao, X., & Tang, S. (2022). Tumor microenvironment based stimuli-responsive CRISPR/Cas delivery systems: A viable platform for interventional approaches. Colloids and Surfaces B: Biointerfaces, 210, 112257.https://doi.org/10.1016/j.colsurfb.2021.112257
Varela-Eirín, M, Varela-Vázquez, A, Blanco, A, Caeiro, JR, & Mayán, MD. (2019). Regulación de la plasticidad celular y senescencia en condrocitos articulares: conexina 43 como diana terapéutica para el tratamiento de la artrosis. Revista de Osteoporosis y Metabolismo Mineral, 11(2), 46-54. Epub 20 de enero de 2020. https://dx.doi.org/10.4321/s1889-836x2019000200003
Volobueva, A., Orekhov, A. & Deykin, A. (2019). An update on the tools for creating transgenic animal models of human diseases – focus on atherosclerosis. Brazilian Journal of Medical and Biological Research, 52(5). https://doi.org/10.1590/1414-431x20198108
Wong ACS, Massel K, Lam Y, Hintzsche J, Chauhan BS. Biotechnological road map for innovative Weed Management. Front Plant Sci.2022;13:887723. https:// doi. org/ 10. 3389/ fpls. 2022. 887723.
Xiao, Q., Guo, D., & Chen, S. (2019). Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Frontiers in cellular and infection microbiology, 9, 69. https://doi.org/10.3389/fcimb.2019.00069
Yin, T. (2021b). Improving T cell therapy: in vivo CRISPR-Cas9 screens tell us how to do. Precision Clinical Medicine, 4(3), 176-178. https://doi.org/10.1093/pcmedi/pbab015.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 RD-ICUAP

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Definir aviso de derechos.
Los datos de este artículo, así como los detalles técnicos para la realización del experimento, se pueden compartir a solicitud directa con el autor de correspondencia.
Los datos personales facilitados por los autores a RD-ICUAP se usarán exclusivamente para los fines declarados por la misma, no estando disponibles para ningún otro propósito ni proporcionados a terceros.