¿QUÉ HAY DE NUEVO? TERAPIAS EMERGENTES PARA EL TRATAMIENTO DE DIABETES MELLITUS
DOI:
https://doi.org/10.32399/icuap.rdic.2448-5829.2023.26.1083Palabras clave:
Diabetes, Antidiabéticos, Fitoquimicos, Genéticamente-Modificado.Resumen
La diabetes mellitus tipo 2 es una enfermedad caracterizada por la resistencia a la insulina, su falta de generación, o ambas. Esta enfermedad afecta el metabolismo de quienes la padecen y pueden presentarse complicaciones si no es controlada.La etiología u origen de la enfermedad se atribuye al mal funcionamiento del control de glucemia en sangre por parte del páncreas, además de que se ha demostrado la relación entre algunos genes y el desarrollo potencial de diabetes. Actualmente existen terapias que mejoran la calidad de vida, en México una de las más empleadas es la inyección de insulina. Otras alternativas incluyen la modificación de la dieta de los pacientes y el consumo de algunos fitocompuestos con propiedades terapéuticas. Las terapias emergentes descritas incluyen: el reemplazo de células beta pancreáticas, inhibidores del cotransportador SGLT2, células madre, y la terapia genética. Así mismo se describe la importancia de los conocimientos computacionales en la predicción de la diabetes mellitus tipo 2.
Citas
Barbu, A. R., & Welsh, N. (2007). Diabetes Mellitus: Gene Therapy. ELS. https://doi.org/10.1002/9780470015902.A0005758.PUB2
Chen, C., Yu, G., Huang, Y., Cheng, W., Li, Y., Sun, Y., Ye, H., & Liu, T. (2021). Genetic-code-expanded cell-based therapy for treating diabetes in mice. Nature Chemical Biology 2021 18:1, 18(1), 47–55. https://doi.org/10.1038/s41589-021-00899-z
Cho, Y. M., Park, K. S., & Lee, H. K. (2007). Genetic factors related to mitochondrial function and risk of diabetes mellitus. Diabetes Research and Clinical Practice, 77(3), S172–S177. https://doi.org/10.1016/J.DIABRES.2007.01.052
Chou, F.-C., Huang, S.-H., & Sytwu, H.-K. (2012). Genetically Engineered Islets and Alternative Sources of Insulin-Producing Cells for Treating Autoimmune Diabetes: Quo Vadis? International Journal of Endocrinology, 2012, 296485. https://doi.org/10.1155/2012/296485
DeFronzo, R. A. y Ferrannini, E. (1991). Resistencia a la insulina. Un síndrome multifacético responsable de NIDDM, obesidad, hipertensión, dislipidemia y enfermedad cardiovascular aterosclerótica.Cuidado de la diabetes, 14(3), 173–194. https://doi.org/10.2337/diacare.14.3.173
Dehghan, M., Ghorbani, F., Najafi, S., Ravaei, N., Karimian, M., Kalhor, K., Movafagh, A., & Mohsen Aghaei Zarch, S. (2022). Progress toward molecular therapy for diabetes mellitus: A focus on targeting inflammatory factors. Diabetes Research and Clinical Practice, 189, 109945. https://doi.org/10.1016/J.DIABRES.2022.109945
Demidova, T. Y., & Zenina, S. G. (2021). Molecular genetic features of the diabetes mellitus development and the possibility of precision therapy. Diabetes Mellitus, 23(5), 467–474. https://doi.org/10.14341/DM12486
Dong, S., & Wu, H. (2018). Regenerating β cells of the pancreas – potential developments in diabetes treatment. Expert Opinion on Biological Therapy, 18(2), 175–185. https://doi.org/10.1080/14712598.2018.1402885
Jaén, M. L., Vilà, L., Elias, I., Jimenez, V., Rodó, J., Maggioni, L., Ruiz-de Gopegui, R., Garcia, M., Muñoz, S., Callejas, D., Ayuso, E., Ferré, T., Grifoll, I., Andaluz, A., Ruberte, J., Haurigot, V., & Bosch, F. (2017). Long-Term Efficacy and Safety of Insulin and Glucokinase Gene Therapy for Diabetes: 8-Year Follow-Up in Dogs. Molecular Therapy - Methods & Clinical Development, 6, 1–7. https://doi.org/10.1016/j.omtm.2017.03.008
Jimenez, V., Jambrina, C., Casana, E., Sacristan, V., Muñoz, S., Darriba, S., Rodó, J., Mallol, C., Garcia, M., León, X., Marcó, S., Ribera, A., Elias, I., Casellas, A., Grass, I., Elias, G., Ferré, T., Motas, S., Franckhauser, S., … Bosch, F. (2018). FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Molecular Medicine, 10(8), e8791. https://doi.org/10.15252/EMMM.201708791
Jin, W., Chen, X., Kong, L., & Huang, C. (2022). Gene therapy targeting inflammatory pericytes corrects angiopathy during diabetic wound healing. Frontiers in Immunology, 13. https://www.frontiersin.org/articles/10.3389/fimmu.2022.960925
Jindal, R. M., Karanam, M., & Shah, R. (2001). Prevention of Diabetes in the NOD Mouse by Intra-muscular Injection of Recombinant Adeno-associated Virus Containing the Preproinsulin II Gene. International Journal of Experimental Diabetes Research, 2, 752645. https://doi.org/10.1155/EDR.2001.129
Joladarashi, D., Zhu, Y., Willman, M., Nash, K., Cimini, M., Thandavarayan, R. A., Youker, K. A., Song, X., Ren, D., Li, J., Kishore, R., Krishnamurthy, P., & Wang, L. (2022). STK35 Gene Therapy Attenuates Endothelial Dysfunction and Improves Cardiac Function in Diabetes. Frontiers in Cardiovascular Medicine, 8. https://www.frontiersin.org/articles/10.3389/fcvm.2021.798091
KAISER, A. M. Y. B., ZHANG, N., & der PLUIJM, W. V. A. N. (2018). Global Prevalence of Type 2 Diabetes over the Next Ten Years (2018-2028). Diabetes, 67(Supplement_1), 202-LB. https://doi.org/10.2337/db18-202-LB
Lama, L., Wilhelmsson, O., Norlander, E., Gustafsson, L., Lager, A., Tynelius, P., Wärvik, L., & Östenson, C. G. (2021). Machine learning for prediction of diabetes risk in middle-aged Swedish people. Heliyon, 7(7), e07419. http://www.cell.com/article/S240584402101522X/fulltext
Lau, H. H., Gan, S. U., Lickert, H., Shapiro, A. M. J., Lee, K. O., & Teo, A. K. K. (2021). Charting the next century of insulin replacement with cell and gene therapies. Med, 2(10), 1138–1162. https://doi.org/10.1016/J.MEDJ.2021.09.001
Ma, S., Viola, R., Sui, L., Cherubini, V., Barbetti, F., & Egli, D. (2018). β Cell Replacement after Gene Editing of a Neonatal Diabetes-Causing Mutation at the Insulin Locus. Stem Cell Reports, 11(6), 1407–1415. https://doi.org/10.1016/J.STEMCR.2018.11.006
Maxwell, K. G., Augsornworawat, P., Velazco-Cruz, L., Kim, M. H., Asada, R., Hogrebe, N. J., Morikawa, S., Urano, F., & Millman, J. R. (2020). Gene-edited human stem cell–derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Science Translational Medicine, 12(540). https://doi.org/10.1126/SCITRANSLMED.AAX9106/SUPPL_FILE/AAX9106_SM.PDF
Mnafgui, K., Kaanich, F., Derbali, A., Hamden, K., Derbali, F., Slama, S., Allouche, N., & Elfeki, A. (2013). Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats. Http://Dx.Doi.Org/10.3109/13813455.2013.822521, 119(5), 225–233. https://doi.org/10.3109/13813455.2013.822521
Naso, M. F., Tomkowicz, B., Perry, W. L., 3rd, & Strohl, W. R. (2017). Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 31(4), 317–334. https://doi.org/10.1007/s40259-017-0234-5
Nauck, M. A., & Meier, J. J. (2018). Incretin hormones: Their role in health and disease. Diabetes, Obesity and Metabolism, 20, 5–21. https://doi.org/10.1111/dom.13129
Pavlovskii, V. v., Derevitskii, I. v., & Kovalchuk, S. v. (2022). Hybrid genetic predictive modeling for finding optimal multipurpose multicomponent therapy. Journal of Computational Science, 63, 101772. https://doi.org/10.1016/J.JOCS.2022.101772
Polinski, J. M., Smith, B. F., Curtis, B. H., Seeger, J. D., Choudhry, N. K., Connolly, J. G., & Shrank, W. H. (2013). Barriers to insulin progression among patients with type 2 diabetes: a systematic review. The Diabetes educator, 39(1), 53–65. https://doi.org/10.1177/0145721712467696
Rojas, J., Bermudez, V., Palmar, J., Martínez, M. S., Olivar, L. C., Nava, M., Tomey, D., Rojas, M., Salazar, J., Garicano, C., & Velasco, M. (2018). Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy. Journal of Diabetes Research, 2018, 9601801. https://doi.org/10.1155/2018/9601801
Sims, E. K., Carr, A. L. J., Oram, R. A., DiMeglio, L. A., & Evans-Molina, C. (2021). 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nature Medicine 2021 27:7, 27(7), 1154–1164. https://doi.org/10.1038/S41591-021-01418-2
Singh, P., Jayaramaiah, R. H., Agawane, S. B., Vannuruswamy, G., Korwar, A. M., Anand, A., Dhaygude, V. S., Shaikh, M. L., Joshi, R. S., Boppana, R., Kulkarni, M. J., Thulasiram, H. v, & Giri, A. P. (2015). Potential Dual Role of Eugenol in Inhibiting Advanced Glycation End Products in Diabetes: Proteomic and Mechanistic Insights OPEN. Nature Publishing Group. https://doi.org/10.1038/srep18798
Thompson, A., & Kanamarlapudi, V. (2013). Type 2 Diabetes Mellitus and Glucagon Like Peptide-1 Receptor Signalling. Clinical and Experimental Pharmacology, 3, 1-18.
Wu, J., Zhao, X., Chen, H., & Zhu, S. (2022a). Metabolic effects of the dual SGLT 1/2 inhibitor sotagliflozin on blood pressure and body weight reduction in people with diabetes: An updated meta-analysis of randomized controlled trials. Journal of Diabetes and Its Complications, 36(12), 108352. https://doi.org/10.1016/J.JDIACOMP.2022.108352
Wu, J., Zhao, X., Chen, H., & Zhu, S. (2022b). Metabolic effects of the dual SGLT 1/2 inhibitor sotagliflozin on blood pressure and body weight reduction in people with diabetes: An updated meta-analysis of randomized controlled trials. Journal of Diabetes and Its Complications, 36(12), 108352. https://doi.org/10.1016/J.JDIACOMP.2022.108352
Xu, X., Poulsen, K. L., Wu, L., Liu, S., Miyata, T., Song, Q., Wei, Q., Zhao, C., Lin, C., & Yang, J. (2022). Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduction and Targeted Therapy 2022 7:1, 7(1), 1–39. https://doi.org/10.1038/s41392-022-01119-3
Yaribeygi, H., Atkin, S. L., Montecucco, F., Jamialahmadi, T., & Sahebkar, A. (2021). Renoprotective Effects of Incretin-Based Therapy in Diabetes Mellitus. BioMed Research International, 2021, 8163153. https://doi.org/10.1155/2021/8163153
Yin, J., Meng, H., Lin, J., Ji, W., Xu, T., & Liu, H. (2022). Pancreatic islet organoids-on-a-chip: how far have we gone? Journal of Nanobiotechnology, 20, 308. https://doi.org/10.1186/s12951-022-01518-2
Yue, Z., Zhang, L., Li, C., Chen, Y., Tai, Y., Shen, Y., & Sun, Z. (2019). Advances and potential of gene therapy for type 2 diabetes mellitus. Biotechnology, Biotechnological Equipment, 33(1), 1150–1157. https://doi.org/10.1080/13102818.2019.1643783
Zhao, R., Hui, A. L., Xu, Y., & Rabijewski, M. (2021). Nontraditional Therapy of Diabetes and Its Complications. Journal of Diabetes Research, 2021, 1592049. https://doi.org/10.1155/2021/1592049
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Definir aviso de derechos.
Los datos de este artículo, así como los detalles técnicos para la realización del experimento, se pueden compartir a solicitud directa con el autor de correspondencia.
Los datos personales facilitados por los autores a RD-ICUAP se usarán exclusivamente para los fines declarados por la misma, no estando disponibles para ningún otro propósito ni proporcionados a terceros.