¿QUÉ HAY DE NUEVO? TERAPIAS EMERGENTES PARA EL TRATAMIENTO DE DIABETES MELLITUS

Autores/as

DOI:

https://doi.org/10.32399/icuap.rdic.2448-5829.2023.26.1083

Palabras clave:

Diabetes, Antidiabéticos, Fitoquimicos, Genéticamente-Modificado.

Resumen

La diabetes mellitus tipo 2 es una enfermedad caracterizada por la resistencia a la insulina, su falta de generación, o ambas. Esta enfermedad afecta el metabolismo de quienes la padecen y pueden presentarse complicaciones si no es controlada.La etiología u origen de la enfermedad se atribuye al mal funcionamiento del control de glucemia en sangre por parte del páncreas, además de que se ha demostrado la relación entre algunos genes y el desarrollo potencial de diabetes.  Actualmente existen terapias que mejoran la calidad de vida, en México una de las más empleadas es la inyección de insulina. Otras alternativas incluyen la modificación de la dieta de los pacientes y el consumo de algunos fitocompuestos con propiedades terapéuticas. Las terapias emergentes descritas incluyen: el reemplazo de células beta pancreáticas, inhibidores del cotransportador SGLT2, células madre, y la terapia genética. Así mismo se describe la importancia de los conocimientos computacionales en la predicción de la diabetes mellitus tipo 2.



 

 

Biografía del autor/a

José Daniel D.L.S-Corone, Facultad de Ciencias Biológicas Licenciatura en Biotecnología. Benemérita Universidad Autónoma de Puebla

 

 

Jorge Rodolfo Belchez-Rodriguez, Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla,

 

 

Diana Calderon-Quiroz, Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla,

 

 

Citas

A. A., & Barnett, A. H. (2010). Emerging treatment options for type 2 diabetes. British Journal of Clinical Pharmacology, 70(5), 631–644. https://doi.org/10.1111/J.1365-2125.2010.03711.X

Barbu, A. R., & Welsh, N. (2007). Diabetes Mellitus: Gene Therapy. ELS. https://doi.org/10.1002/9780470015902.A0005758.PUB2

Chen, C., Yu, G., Huang, Y., Cheng, W., Li, Y., Sun, Y., Ye, H., & Liu, T. (2021). Genetic-code-expanded cell-based therapy for treating diabetes in mice. Nature Chemical Biology 2021 18:1, 18(1), 47–55. https://doi.org/10.1038/s41589-021-00899-z

Cho, Y. M., Park, K. S., & Lee, H. K. (2007). Genetic factors related to mitochondrial function and risk of diabetes mellitus. Diabetes Research and Clinical Practice, 77(3), S172–S177. https://doi.org/10.1016/J.DIABRES.2007.01.052

Chou, F.-C., Huang, S.-H., & Sytwu, H.-K. (2012). Genetically Engineered Islets and Alternative Sources of Insulin-Producing Cells for Treating Autoimmune Diabetes: Quo Vadis? International Journal of Endocrinology, 2012, 296485. https://doi.org/10.1155/2012/296485

DeFronzo, R. A. y Ferrannini, E. (1991). Resistencia a la insulina. Un síndrome multifacético responsable de NIDDM, obesidad, hipertensión, dislipidemia y enfermedad cardiovascular aterosclerótica.Cuidado de la diabetes, 14(3), 173–194. https://doi.org/10.2337/diacare.14.3.173

Dehghan, M., Ghorbani, F., Najafi, S., Ravaei, N., Karimian, M., Kalhor, K., Movafagh, A., & Mohsen Aghaei Zarch, S. (2022). Progress toward molecular therapy for diabetes mellitus: A focus on targeting inflammatory factors. Diabetes Research and Clinical Practice, 189, 109945. https://doi.org/10.1016/J.DIABRES.2022.109945

Demidova, T. Y., & Zenina, S. G. (2021). Molecular genetic features of the diabetes mellitus development and the possibility of precision therapy. Diabetes Mellitus, 23(5), 467–474. https://doi.org/10.14341/DM12486

Dong, S., & Wu, H. (2018). Regenerating β cells of the pancreas – potential developments in diabetes treatment. Expert Opinion on Biological Therapy, 18(2), 175–185. https://doi.org/10.1080/14712598.2018.1402885

Jaén, M. L., Vilà, L., Elias, I., Jimenez, V., Rodó, J., Maggioni, L., Ruiz-de Gopegui, R., Garcia, M., Muñoz, S., Callejas, D., Ayuso, E., Ferré, T., Grifoll, I., Andaluz, A., Ruberte, J., Haurigot, V., & Bosch, F. (2017). Long-Term Efficacy and Safety of Insulin and Glucokinase Gene Therapy for Diabetes: 8-Year Follow-Up in Dogs. Molecular Therapy - Methods & Clinical Development, 6, 1–7. https://doi.org/10.1016/j.omtm.2017.03.008

Jimenez, V., Jambrina, C., Casana, E., Sacristan, V., Muñoz, S., Darriba, S., Rodó, J., Mallol, C., Garcia, M., León, X., Marcó, S., Ribera, A., Elias, I., Casellas, A., Grass, I., Elias, G., Ferré, T., Motas, S., Franckhauser, S., … Bosch, F. (2018). FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Molecular Medicine, 10(8), e8791. https://doi.org/10.15252/EMMM.201708791

Jin, W., Chen, X., Kong, L., & Huang, C. (2022). Gene therapy targeting inflammatory pericytes corrects angiopathy during diabetic wound healing. Frontiers in Immunology, 13. https://www.frontiersin.org/articles/10.3389/fimmu.2022.960925

Jindal, R. M., Karanam, M., & Shah, R. (2001). Prevention of Diabetes in the NOD Mouse by Intra-muscular Injection of Recombinant Adeno-associated Virus Containing the Preproinsulin II Gene. International Journal of Experimental Diabetes Research, 2, 752645. https://doi.org/10.1155/EDR.2001.129

Joladarashi, D., Zhu, Y., Willman, M., Nash, K., Cimini, M., Thandavarayan, R. A., Youker, K. A., Song, X., Ren, D., Li, J., Kishore, R., Krishnamurthy, P., & Wang, L. (2022). STK35 Gene Therapy Attenuates Endothelial Dysfunction and Improves Cardiac Function in Diabetes. Frontiers in Cardiovascular Medicine, 8. https://www.frontiersin.org/articles/10.3389/fcvm.2021.798091

KAISER, A. M. Y. B., ZHANG, N., & der PLUIJM, W. V. A. N. (2018). Global Prevalence of Type 2 Diabetes over the Next Ten Years (2018-2028). Diabetes, 67(Supplement_1), 202-LB. https://doi.org/10.2337/db18-202-LB

Lama, L., Wilhelmsson, O., Norlander, E., Gustafsson, L., Lager, A., Tynelius, P., Wärvik, L., & Östenson, C. G. (2021). Machine learning for prediction of diabetes risk in middle-aged Swedish people. Heliyon, 7(7), e07419. http://www.cell.com/article/S240584402101522X/fulltext

Lau, H. H., Gan, S. U., Lickert, H., Shapiro, A. M. J., Lee, K. O., & Teo, A. K. K. (2021). Charting the next century of insulin replacement with cell and gene therapies. Med, 2(10), 1138–1162. https://doi.org/10.1016/J.MEDJ.2021.09.001

Ma, S., Viola, R., Sui, L., Cherubini, V., Barbetti, F., & Egli, D. (2018). β Cell Replacement after Gene Editing of a Neonatal Diabetes-Causing Mutation at the Insulin Locus. Stem Cell Reports, 11(6), 1407–1415. https://doi.org/10.1016/J.STEMCR.2018.11.006

Maxwell, K. G., Augsornworawat, P., Velazco-Cruz, L., Kim, M. H., Asada, R., Hogrebe, N. J., Morikawa, S., Urano, F., & Millman, J. R. (2020). Gene-edited human stem cell–derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Science Translational Medicine, 12(540). https://doi.org/10.1126/SCITRANSLMED.AAX9106/SUPPL_FILE/AAX9106_SM.PDF

Mnafgui, K., Kaanich, F., Derbali, A., Hamden, K., Derbali, F., Slama, S., Allouche, N., & Elfeki, A. (2013). Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats. Http://Dx.Doi.Org/10.3109/13813455.2013.822521, 119(5), 225–233. https://doi.org/10.3109/13813455.2013.822521

Naso, M. F., Tomkowicz, B., Perry, W. L., 3rd, & Strohl, W. R. (2017). Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 31(4), 317–334. https://doi.org/10.1007/s40259-017-0234-5

Nauck, M. A., & Meier, J. J. (2018). Incretin hormones: Their role in health and disease. Diabetes, Obesity and Metabolism, 20, 5–21. https://doi.org/10.1111/dom.13129

Pavlovskii, V. v., Derevitskii, I. v., & Kovalchuk, S. v. (2022). Hybrid genetic predictive modeling for finding optimal multipurpose multicomponent therapy. Journal of Computational Science, 63, 101772. https://doi.org/10.1016/J.JOCS.2022.101772

Polinski, J. M., Smith, B. F., Curtis, B. H., Seeger, J. D., Choudhry, N. K., Connolly, J. G., & Shrank, W. H. (2013). Barriers to insulin progression among patients with type 2 diabetes: a systematic review. The Diabetes educator, 39(1), 53–65. https://doi.org/10.1177/0145721712467696

Rojas, J., Bermudez, V., Palmar, J., Martínez, M. S., Olivar, L. C., Nava, M., Tomey, D., Rojas, M., Salazar, J., Garicano, C., & Velasco, M. (2018). Pancreatic Beta Cell Death: Novel Potential Mechanisms in Diabetes Therapy. Journal of Diabetes Research, 2018, 9601801. https://doi.org/10.1155/2018/9601801

Sims, E. K., Carr, A. L. J., Oram, R. A., DiMeglio, L. A., & Evans-Molina, C. (2021). 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nature Medicine 2021 27:7, 27(7), 1154–1164. https://doi.org/10.1038/S41591-021-01418-2

Singh, P., Jayaramaiah, R. H., Agawane, S. B., Vannuruswamy, G., Korwar, A. M., Anand, A., Dhaygude, V. S., Shaikh, M. L., Joshi, R. S., Boppana, R., Kulkarni, M. J., Thulasiram, H. v, & Giri, A. P. (2015). Potential Dual Role of Eugenol in Inhibiting Advanced Glycation End Products in Diabetes: Proteomic and Mechanistic Insights OPEN. Nature Publishing Group. https://doi.org/10.1038/srep18798

Thompson, A., & Kanamarlapudi, V. (2013). Type 2 Diabetes Mellitus and Glucagon Like Peptide-1 Receptor Signalling. Clinical and Experimental Pharmacology, 3, 1-18.

Wu, J., Zhao, X., Chen, H., & Zhu, S. (2022a). Metabolic effects of the dual SGLT 1/2 inhibitor sotagliflozin on blood pressure and body weight reduction in people with diabetes: An updated meta-analysis of randomized controlled trials. Journal of Diabetes and Its Complications, 36(12), 108352. https://doi.org/10.1016/J.JDIACOMP.2022.108352

Wu, J., Zhao, X., Chen, H., & Zhu, S. (2022b). Metabolic effects of the dual SGLT 1/2 inhibitor sotagliflozin on blood pressure and body weight reduction in people with diabetes: An updated meta-analysis of randomized controlled trials. Journal of Diabetes and Its Complications, 36(12), 108352. https://doi.org/10.1016/J.JDIACOMP.2022.108352

Xu, X., Poulsen, K. L., Wu, L., Liu, S., Miyata, T., Song, Q., Wei, Q., Zhao, C., Lin, C., & Yang, J. (2022). Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduction and Targeted Therapy 2022 7:1, 7(1), 1–39. https://doi.org/10.1038/s41392-022-01119-3

Yaribeygi, H., Atkin, S. L., Montecucco, F., Jamialahmadi, T., & Sahebkar, A. (2021). Renoprotective Effects of Incretin-Based Therapy in Diabetes Mellitus. BioMed Research International, 2021, 8163153. https://doi.org/10.1155/2021/8163153

Yin, J., Meng, H., Lin, J., Ji, W., Xu, T., & Liu, H. (2022). Pancreatic islet organoids-on-a-chip: how far have we gone? Journal of Nanobiotechnology, 20, 308. https://doi.org/10.1186/s12951-022-01518-2
Yue, Z., Zhang, L., Li, C., Chen, Y., Tai, Y., Shen, Y., & Sun, Z. (2019). Advances and potential of gene therapy for type 2 diabetes mellitus. Biotechnology, Biotechnological Equipment, 33(1), 1150–1157. https://doi.org/10.1080/13102818.2019.1643783

Zhao, R., Hui, A. L., Xu, Y., & Rabijewski, M. (2021). Nontraditional Therapy of Diabetes and Its Complications. Journal of Diabetes Research, 2021, 1592049. https://doi.org/10.1155/2021/1592049

Descargas

Publicado

2023-05-01

Cómo citar

D.L.S-Corone, J. D., Belchez-Rodriguez, J. R., & Calderon-Quiroz, D. . (2023). ¿QUÉ HAY DE NUEVO? TERAPIAS EMERGENTES PARA EL TRATAMIENTO DE DIABETES MELLITUS. RD-ICUAP, 9(26), 80–90. https://doi.org/10.32399/icuap.rdic.2448-5829.2023.26.1083

Número

Sección

Artículos