HIDROXIAPATITA: UN BIOMATERIAL FUERA DE SERIE

Autores/as

DOI:

https://doi.org/10.32399/icuap.rdic.2448-5829.2023.25.1060

Palabras clave:

Hidroxiapatita, regeneración ósea, Remediación ambiental, Síntesis

Resumen

La ciencia y la tecnología avanzan a pasos agigantados, influyendo en la mejora de la humanidad. Sin duda a lo largo de la historia se han utilizado diferentes materiales como los metales, aleaciones, compuestos orgánicos, materiales biocerámicos, entre otros, que han sido empleados para el uso cotidiano de los seres humanos mediante la transformación y manipulación de éstos. Uno de estos materiales es un biocerámico que forma parte de la constitución de diversos organismos, este es la hidroxiapatita, misma que se encuentra en los huesos de humanos y animales vertebrados. Desde que se tuvo conocimiento de su existencia se ha estudiado con el propósito de ayudar a remediar padecimientos óseos, aunque no ha sido su único uso. En el presente artículo se exponen las características de la hidroxiapatita, dónde se encuentra y sus aplicaciones.

 

 

Biografía del autor/a

Edna X. Figueroa-Rosales , Centro de Investigaciones en Dispositivos Semiconductores. Instituto de Ciencias. Benemérita Universidad Autónoma de Puebla

 

 

 

Diego V. Benitez-Maldonado, Centro de Investigaciones en Dispositivos Semiconductores. Instituto de Ciencias. Benemérita Universidad Autónoma de Puebla

 

 

Javier Martínez-Juárez, Centro de Investigaciones en Dispositivos Semiconductores. Instituto de Ciencias. Benemérita Universidad Autónoma de Puebla

 

 

A. David Hernández-De la Luz, Centro de Investigaciones en Dispositivos Semiconductores. Instituto de Ciencias. Benemérita Universidad Autónoma de Puebla

 

 

María J. Robles-Águila , Centro de Investigaciones en Dispositivos Semiconductores. Instituto de Ciencias. Benemérita Universidad Autónoma de Puebla

 

 

Citas

Akram, M., Ahmed, R., Shakir, I., Ibrahim, W. A. W., & Hussain, R. (2014). Extracting hydroxyapatite and its precursors from natural resources. Journal of Materials Science, 49(4), 1461–1475. https://doi.org/10.1007/s10853-013-7864-x
Al-Hamdan, R. S., Almutairi, B., Kattan, H. F., Alsuwailem, N. A., Farooq, I., Vohra, F., & Abduljabbar, T. (2020). Influence of Hydroxyapatite Nanospheres in Dentin Adhesive on the Dentin Bond Integrity and Degree of Conversion: A Scanning Electron Microscopy (SEM), Raman, Fourier Transform-Infrared (FTIR), and Microtensile Study. Polymers, 12(12), 1–15. https://doi.org/10.3390/polym12122948
Amedlous, A., Majdoub, M., Amadine, O., Essamlali, Y., Dânoun, K., & Zahouily, M. (2022). Hydroxyapatite-Based Materials for Environmental Remediation. In E. Lichtfouse, S. S. Muthu, & A. Khadir (Eds.), Inorganic-Organic Composites for Water and Wastewater Treatment (Vol. 1, pp. 55–100). Springer. https://doi.org/10.1007/978-981-16-5916-4_3
Askeland, D. R., & Wright, W. J. (2015). Ciencia e ingeniería de materiales (J. Reyes Marínez (ed.); 7a ed.). Cengage Learning. http://latinoamerica.cengage.com
Backwell, L., & D’Errico, F. (2008). Early hominid bone tools from Drimolen, South Africa. Journal of Archaeological Science, 35(11), 2880–2894. https://doi.org/10.1016/j.jas.2008.05.017
Benitez-Maldonado, D. V., García-Díaz, E., Sabinas-Hernández, S. A., Silva-González, R., & Robles-Águila, M. J. (2022). Zinc-doped hydroxyapatite: an UVA light photocatalyst for the removal of bisphenol A. New Journal of Chemistry, 46(26), 12623–12631. https://doi.org/10.1039/D2NJ01621D
Brazdis, R. I., Fierascu, I., Avramescu, S. M., & Fierascu, R. C. (2021). Recent Progress in the Application of Hydroxyapatite for the Adsorption of Heavy Metals from Water Matrices. Materials, 14(22), 1–30. https://doi.org/10.3390/ma14226898
Buckwalter, J. A., Glimcher, M. J., Cooper, R. R., & Recker, R. (1995). Bone Biology. Part 1: Structure, blood supply, cells, matrix, and mineralization. The Journal of Bone & Joint Surgery - Series A, 77(8), 1256–1275. https://doi.org/10.2106/00004623-199508000-00019
Chen, F., Huang, P., Zhu, Y.-J., Wu, J., Zhang, C.-L., & Cui, D.-X. (2011). The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials, 32(34), 9031–9039. https://doi.org/10.1016/j.biomaterials.2011.08.032
corazónméxico. (2013). ARTE Y TRADICIÓN SIN FRONTERAS. WordPress. https://corazonmexico.wordpress.com/category/mexico-2/
Dorozhkin, S. V. (2013). A detailed history of calcium orthophosphates from 1770s till 1950. Materials Science and Engineering C, 33(6), 3085–3110. https://doi.org/10.1016/j.msec.2013.04.002
Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10(4). https://doi.org/10.3390/ma10040334
Farooq, I., Ali, S., Al-Saleh, S., AlHamdan, E. M., AlRefeai, M. H., Abduljabbar, T., & Vohra, F. (2021). Synergistic Effect of Bioactive Inorganic Fillers in Enhancing Properties of Dentin Adhesives—A Review. Polymers, 13(13), 1–15. https://doi.org/10.3390/polym13132169
Gandhi, A. A., Wojtas, M., Lang, S. B., Kholkin, A. L., & Tofail, S. A. M. (2014). Piezoelectricity in Poled Hydroxyapatite Ceramics. Journal of the American Ceramic Society, 97(9), 2867–2872. https://doi.org/10.1111/jace.13045
Heimann, R. B. (2010). Introduction to Classic Ceramics. In Classic and Advanced Ceramics (pp. 1–10). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527630172.ch1
Hench, L. L. (1991). Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 74(7), 1487–1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
Kanwar, S., & Vijayavenkataraman, S. (2021). Design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting, 24, e00167. https://doi.org/10.1016/j.bprint.2021.e00167
Kramer, J. R. (1964). Sea Water: Saturation with Apatites and Carbonates. Science, 146(3644), 637–638. https://doi.org/10.1126/science.146.3644.637
Lang, S. B., Tofail, S. A. M., Gandhi, A. A., Gregor, M., Wolf-Brandstetter, C., Kost, J., Bauer, S., & Krause, M. (2011). Pyroelectric, piezoelectric, and photoeffects in hydroxyapatite thin films on silicon. Applied Physics Letters, 98(12), 123703. https://doi.org/10.1063/1.3571294
Leeuwenhoeck, A. Van. (1674). Microscopical observations from Leeuwenhoeck, concerning blood, milk, bones, the brain, spitle, cuticula, sweat, fatt and teares. Philosophical Transactions of the Royal Society of London, 9(106), 121–131. https://doi.org/10.1098/rstl.1674.0030
Leeuwenhoek, A. Van. (1697). Concerning the Eggs of Snails, Roots of vegetables, teeth, and Young Oysters. Philosophical Transactions of the Royal Society of London, 19(235), 790–799. https://doi.org/10.1098/rstl.1695.0147
Ma, G., & Liu, X. Y. (2009). Hydroxyapatite: Hexagonal or monoclinic? Crystal Growth and Design, 9(7), 2991–2994. https://doi.org/10.1021/cg900156w
Mcconnell, D. (1963). Inorganic constituents in the shell of the living Brachiopod lingula. Geological Society of America Bulletin, 74(1), 363–364. https://doi.org/https://doi.org/10.1130/0016-7606(1963)74[363:ICITSO]2.0.CO;2
NASA. (2020). 27 de Mayo: Lanzamiento de la Primera Nave Tripulada America Desde 2011. NASA En Español. https://www.lanasa.net/noticias/spaceflight/27-de-mayo-de-2020-lanzamiento-de-la-primera-nave-tripulada-americana-desde-2011
Okrusch, M., & Frimmel, H. E. (2020). Mineralogy An Introduction to Minerals, Rocks, and Mineral Deposits. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-57316-7
Ruiz Bremón, M., & San Nicolás Pedraz, M. P. (2008). Enfermar en la antigüedad. UNED. https://books.google.com.mx/books?id=WnQ3uCNS12AC&pg=PP43&dq=usos+del+hueso+en+la+antiguedad&hl=es&sa=X&ved=2ahUKEwjbuqCHlZPzAhXETDABHbilD6A4FBDoAXoECAkQAg#v=onepage&q=usos del hueso en la antiguedad&f=false
Shi, D., & Wen, X. (2005). Bioactive Ceramics: Structure, Synthesis, and Mechanical Properties. In Introduction to Biomaterials (pp. 13–28). Tsinghua University Press. https://doi.org/10.1142/9789812700858_0002
Souza-Rodrigues, R. D. de, Puty, B., Bonfim, L., Nogueira, L. S., Nascimento, P. C., Bittencourt, L. O., Couto, R. S. D. A., Barboza, C. A. G., de Oliveira, E. H. C., Marques, M. M., & Lima, R. R. (2021). Methylmercury-induced cytotoxicity and oxidative biochemistry impairment in dental pulp stem cells: the first toxicological findings. PeerJ, 9, 1–15. https://doi.org/10.7717/peerj.11114
Wang, C., Liu, D., Zhang, C., Sun, J., Feng, W., Liang, X. J., Wang, S., & Zhang, J. (2016). Defect-Related Luminescent Hydroxyapatite-Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells Via an ATP-Induced cAMP/PKA Pathway. ACS Applied Materials and Interfaces, 8(18), 11262–11271. https://doi.org/10.1021/acsami.6b01103
Ye, J., Huang, B., & Gong, P. (2021). Nerve growth factor-chondroitin sulfate/hydroxyapatite-coating composite implant induces early osseointegration and nerve regeneration of peri-implant tissues in Beagle dogs. Journal of Orthopaedic Surgery and Research, 16(1), 51. https://doi.org/10.1186/s13018-020-02177-5
Yin, L., Lin, S., Summers, A. O., Roper, V., Campen, M. J., & Yu, X. (2021). Children with Amalgam Dental Restorations Have Significantly Elevated Blood and Urine Mercury Levels. Toxicological Sciences, 184(1), 104–126. https://doi.org/10.1093/toxsci/kfab108
Zutovski, K., & Barkai, R. (2016). The use of elephant bones for making Acheulian handaxes: A fresh look at old bones. Quaternary International, 406, 227–238. https://doi.org/10.1016/j.quaint.2015.01.033

Descargas

Publicado

2023-03-02

Cómo citar

Figueroa-Rosales , E. X. ., Benitez-Maldonado, D. V. ., Martínez-Juárez, J. ., Hernández-De la Luz, . A. D. ., & Robles-Águila , M. J. . (2023). HIDROXIAPATITA: UN BIOMATERIAL FUERA DE SERIE. RD-ICUAP, 9(25), 126–134. https://doi.org/10.32399/icuap.rdic.2448-5829.2023.25.1060

Número

Sección

Artículos

Artículos más leídos del mismo autor/a