Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Año 8, No.24 Septiembre - Diciembre 2022

MECANISMOS DE RESPUESTA VEGETAL AL ESTRÉS CAUSADO POR CROMO

Enviado
noviembre 16, 2022
Publicado
noviembre 14, 2022

Resumen

Las actividades antropogénicas y la disposición inadecuada de sus desechos ha provocado la acumulación de metales pesados en el suelo. El Cromo VI es uno de los metales pesados más tóxicos para el medio ambiente, que causa cambios en la expresión génica de diferentes especies vegetales, algunas de ellas  han sido capaces de adaptarse a este ambiente contaminado usando estrategias cómo algunos sistemas enzimáticos que las protegen del estrés oxidativo generado por la presencia de Cromo VI en el medio.

 

Citas

Aldrich, M. V, Gardea-Torresdey, J. L., Peralta-Videa, J. R., Parsons, J. G. (2003). Uptake and reduction of Cr (VI) to Cr (III) by mesquite (Prosopis spp.): Chromate− plant interaction in hydroponics and solid media studied using XAS. Environmental Science & Technology, 37(9), 1859–1864.
Appenroth, K.J., Stöckel, J., Srivastava, A., Strasser, R. J. (2001). Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution, 115(1), 49–64.
Baker, A. J. M. (1981). Accumulators and excluders‐strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3(1–4), 643–654.
Barber, D. J. W., Thomas, J. K. (1978). Reactions of radicals with lecithin bilayers. Radiation Research, 74(1), 51–65.
Becquer, T., Quantin, C., Sicot, M., Boudot, J. P. (2003). Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment, 301(1–3), 251–261.
Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., Baker, A. J. M. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8(3), 279–284.
Del Razo, L. M., Quintanilla-Vega, B., Brambila-Colombres, E., Calderón-Aranda, E. S., Manno, M., Albores, A. (2001). Stress proteins induced by arsenic. Toxicology and Applied Pharmacology, 177(2), 132–148.
Dietz, K.J. (2003). Plant peroxiredoxins. Annual Review of Plant Biology, 54(1), 93–107.
Dixit, V., Pandey, V., Shyam, R. (2002). Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell & Environment, 25(5), 687–693.
Dixon, D., Cole, D. J., Edwards, R. (1997). Characterisation of multiple glutathione transferases containing the GST I subunit with activities toward herbicide substrates in maize (Zea mays). Pesticide Science, 50(1), 72–82.
Eleftheriou, E. P., Adamakis, I.D. S., Melissa, P. (2012). Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L. Protoplasma, 249(2), 401–416.
Ercal, N., Gurer-Orhan, H., Aykin-Burns, N. (2001). Toxic metals and oxidative stress. Part I: Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6), 529–539.
Graeber, K. A. I., Nakabayashi, K., Miatton, E., Leubner‐Metzger, G., Soppe, W. J. J. (2012). Molecular mechanisms of seed dormancy. Plant, Cell & Environment, 35(10), 1769–1786.
Grill, E., Löffler, S., Winnacker, E.-L., Zenk, M. H. (1989). Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences, 86(18), 6838–6842.
Hayes, J. D., Flanagan, J. U., Jowsey, I. R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology., 45, 51–88.
Hossain, Z., Komatsu, S. (2013). Contribution of proteomic studies towards understanding plant heavy metal stress response. Frontiers in Plant Science, 3, 310.
Juarez, A. B., Barsanti, L., Passarelli, V., Evangelista, V., Vesentini, N., Conforti, V., Gualtieri, P. (2008). In vivo microspectroscopy monitoring of chromium effects on the photosynthetic and photoreceptive apparatus of Eudorina unicocca and Chlorella kessleri. Journal of Environmental Monitoring, 10(11), 1313–1318.
Kafer, C., Zhou, L., Santoso, D., Guirgis, A., Weers, B., Park, S., Thornburg, R. (2004). Regulation of pyrimidine metabolism in plants. Frontiers in Bioscience-Landmark., 9, 1611–1625.
Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29(1), 1–46.
Laborde, E. (2010). Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death & Differentiation, 17(9), 1373–1380.
Larcher, W. (2003). Physiological plant ecology: Ecophysiology and stress physiology of functional groups. Springer Science & Business Media. Pp. 514. Springer Berlin, Heidelberg.
Li, C., Deng, X., Xie, X., Liu, Y., Friedmann Angeli, J. P., Lai, L. (2018). Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy. Frontiers in Pharmacology, 9, 1120.
Listowsky, I. (2005). Proposed intracellular regulatory functions of glutathione transferases by recognition and binding to S‐glutathiolated proteins. The Journal of Peptide Research, 65(1), 42–46.
Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiology, 158(2), 844–853.
Martin, T., Sharma, R., Sippel, C., Waegemann, K., Soll, J., Vothknecht, U. C. (2006). A protein kinase family in Arabidopsis phosphorylates chloroplast precursor proteins. Journal of Biological Chemistry, 281(52), 40216–40223.
Moisyadi, S., Dharmasiri, S., Harrington, H. M., Lukas, T. J. (1994). Characterization of a low molecular mass autophosphorylating protein in cultured sugarcane cells and its identification as a nucleoside diphosphate kinase. Plant Physiology, 104(4), 1401–1409.
Moons, A. (2005). Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitamins & Hormones, 72, 155–202.
Neuefeind, T., Reinemer, P., Bieseler, B. (1997). Plant glutathione S-transferases and herbicide detoxification. Biological Chemistry, 378(3–4), 199–205.
Nianiou-Obeidat, I., Madesis, P., Kissoudis, C., Voulgari, G., Chronopoulou, E., Tsaftaris, A., & Labrou, N. E. (2017). Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Reports, 36(6), 791–805.
Nutricati, E., Miceli, A., Blando, F., De Bellis, L. (2006). Characterization of two Arabidopsis thaliana glutathione S-transferases. Plant Cell Reports, 25(9), 997–1005.
Pignatello, J. J., Liu, D., Huston, P. (1999). Evidence for an additional oxidant in the photoassisted Fenton reaction. Environmental Science & Technology, 33(11), 1832–1839.
Rea, P. A. (1999). MRP subfamily ABC transporters from plants and yeast. Journal of Experimental Botany, 50, 895–913.
Rodriguez, E., Azevedo, R., Fernandes, P., Santos, C. ão. (2011). Cr (VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chemical Research in Toxicology, 24(7), 1040–1047.
Salnikow, K., Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chemical Research in Toxicology, 21(1), 28–44.
Shahabzadeh, Z., Darvishzadeh, R., Mohammadi, R., Jafari, M. (2020). Isolation, characterization, and expression profiling of nucleoside diphosphate kinase gene from tall fescue (Festuca arundinaceous Schreb.)(FaNDPK) under salt stress. Plant Molecular Biology Reporter, 38(2), 175–186.
Shanker, A. K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753.
Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229–254.
Srivastava, D., Verma, G., Chauhan, A. S., Pande, V., Chakrabarty, D. (2019). Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance. Metallomics, 11(2), 375–389.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology, 101, 133–164.
Wuana, R. A., Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011, 1-20.
Zhu, X., Guo, S., Wang, Z., Du, Q., Xing, Y., Zhang, T., Shen, W., Sang, X., Ling, Y., He, G. (2016). Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biology, 16(1), 1–15.