Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Año 8 No. 23 Mayo - Agosto 2022

Del suelo a la granja: vacunas de origen vegetal con fines terapéuticos para animales de corral

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2022.23.824
Enviado
junio 22, 2022
Publicado
junio 20, 2022

Resumen

Desde hace varios años se ha demostrado mediante diversas investigaciones que las plantas son una plataforma robusta para la expresión de péptidos con actividad inmunológica que pueden ser utilizados como vacunas. El uso de organismos vegetales es muy conveniente porque resulta económico, es escalable y permite que la integración del material genético se realice mediante técnicas ya bien caracterizadas. La inmunización veterinaria con vacunas generadas en plantas representa una opción viable para proteger a animales de granja de diversos patógenos, con esto se pueden evitar pérdidas económicas o emergencias de salud. A la fecha sólo la vacuna contra la enfermedad de Newcastle está disponible en el mercado ya que existen muchas restricciones  por parte de entidades reguladoras. A pesar de esto, las investigaciones respecto a las vacunas producidas en plantas siguen avanzando a lo largo del mundo, presentándonos una perspectiva favorable para el futuro.

Palabras claves: Vacunas veterinarias. Planta. Enfermedad. Salud animal

 

Abstract

 

For several years it has been demonstrated through various investigations that plants  are a robust platform for the expression of peptides with immunological activity that can be used as vaccines. The use of plant organisms is very convenient because it is inexpensive, scalable and allows the integration of genetic material using well characterized techniques. Veterinary immunization with plant-generated vaccines represents a viable option to protect farm animals from various pathogens, thereby avoiding economic losses or health emergencies. To date, only the vaccine against Newcastle disease is commercially available because there are many restrictions by regulatory agencies, in spite of this. research on plant-derived vaccines continues to advance throughout the world, presenting a favorable outlook for the future.

 

Keywords: Veterinary vaccines. Plant. Disease, Animal health

Citas

  1. Aswathi, PB., Bhanja, SK., Yadav, AS., Rekha, V., John, JK., Gopinath, D., Sadanandan, GV., Shinde, A., & Jacob A (2014). Plant based edible vaccines against poultry diseases: a review. Advances in Animal and Veterinary Sciences, 2(5), 305–311. http://dx.doi.org/10.14737/journal.aavs/2014/2.5.305.311
  2. Clarke, J. L., Paruch, L., Dobrica, M.-O., Caras, I., Tucureanu, C., Onu, A., Ciulean, S., Stavaru, C., Eerde, A., Wang, Y., Steen, H., Haugslien, S., Petrareanu, C., Lazar, C., Popescu, C.-I., Bock, R., Dubuisson, J., & Branza-Nichita, N. (2017). Lettuce-produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination. Plant Biotechnology Journal, 15(12), 1611–1621. https://doi.org/10.1111/pbi.12743
  3. Fischer, R., Stoger, E., Schillberg, S., Christou, P., & Twyman, R. M. (2004). Plant-based production of biopharmaceuticals. Current Opinion in Plant Biology, 7(2), 152–158. https://doi.org/10.1016/j.pbi.2004.01.007
  4. Floss, D. M., Falkenburg, D., & Conrad, U. (2007). Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic research, 16(3), 315-332.
  5. Fragoso, G., Hernández, M., Cervantes-Torres, J., Ramírez-Aquino, R., Chapula, H., Villalobos, N., Segura-Velázquez, R., Figueroa, A., Flores, I., Jiménez, H., Adalid, L., Rosas, G., Galvez, L., Pezzat, E., Monreal-Escalante, E., Rosales-Mendoza, S., Vazquez, L. G., & Sciutto, E. (2017). Transgenic papaya: a useful platform for oral vaccines. Planta, 245(5), 1037–1048. https://doi.org/10.1007/s00425-017-2658-z
  6. Frisio, D. G., & Ventura, V. (2021). Global Innovation Trends for Plant-Based Vaccines Production: A Patent Analysis. Plants, 10(12), 2558. https://doi.org/10.3390/plants10122558
  7. Govea-Alonso, D. O., Rybicki, E., & Rosales-Mendoza, S. (2014). Plant-based vaccines as a global vaccination approach: current perspectives. Genetically Engineered Plants as a Source of Vaccines Against Wide Spread Diseases, 265-280.
  8. Joensuu, J. J., Niklander-Teeri, V., & Brandle, J. E. (2008). Transgenic plants for animal health: plant-made vaccine antigens for animal infectious disease control. Phytochemistry Reviews, 7(3), 553-577.
  9. Laughlin, R. C., Madera, R., Peres, Y., Berquist, B. R., Wang, L., Buist, S., Burakova, Y., Palle, S., Chung, C. J., Rasmussen, M. V., Martel, E., Brake, D. A., Neilan, J. G., Lawhon, S. D., Adams, L. G., Shi, J., & Marcel, S. (2018). Plant‐made E2 glycoprotein single‐dose vaccine protects pigs against classical swine fever. Plant Biotechnology Journal, 17(2), 410–420. https://doi.org/10.1111/pbi.12986
  10. Liew, P. S., & Hair-Bejo, M. (2015). Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals. Advances in Virology, 2015, 1–12. https://doi.org/10.1155/2015/936940
  11. Ling, H.-Y., Pelosi, A., & Walmsley, A. M. (2010). Current status of plant-made vaccines for veterinary purposes. Expert Review of Vaccines, 9(8), 971–982. doi:10.1586/erv.10.87
  12. MacDonald, J., Doshi, K., Dussault, M., Hall, J. C., Holbrook, L., Jones, G., Kaldis, A., Klima, C. L., Macdonald, P., McAllister, T., McLean, M. D., Potter, A., Richman, A., Shearer, H., Yarosh, O., Yoo, H. S., Topp, E., & Menassa, R. (2015). Bringing plant-based veterinary vaccines to market: Managing regulatory and commercial hurdles. Biotechnology Advances, 33(8), 1572–1581. https://doi.org/10.1016/j.biotechadv.2015.07.007
  13. Majó, N., Biarnés, M., Bertran, K., & Nofrarías, M. (2021). Enfermedades respiratorias víricas en avicultura. Bronquitis infecciosa, gripe aviar y enfermedad de Newcastle. Grupo Asís Biomedia SL.
  14. Mejoran vacuna contra cisticercosis desarrollada en la UNAM. (2018). Unam.mx. https://www.dgcs.unam.mx/boletin/bdboletin/2018_406.html
  15. Meyers, A. (2018). Diseases with Limited Research of Plant-Based Vaccines. Prospects of Plant-Based Vaccines in Veterinary Medicine, 347–367. https://doi.org/10.1007/978-3-319-90137-4_16
  16. Mason, H. S., Warzecha, H., Mor, T., & Arntzen, C. J. (2002). Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends in Molecular Medicine, 8(7), 324–329. https://doi.org/10.1016/s1471-4914(02)02360-2
  17. OPS/OMS. Zoonosis. (2018). Paho.org. https://www.paho.org/es/temas/zoonosis
  18. Rassy, D., Bobes, R. J., Rosas, G., Anaya, V. H., Brehm, K., Hernández, B., Cervantes, J., Pedraza, S., Morales, J., Villalobos, N., de Aluja, A. S., Laclette, J. P., Nunes, C. M., Biondi, G. F., Fragoso, G., Hernández, M., & Sciutto, E. (2010). Characterization of S3Pvac Anti-Cysticercosis Vaccine Components: Implications for the Development of an Anti-Cestodiasis Vaccine. PLoS ONE, 5(6), e11287. https://doi.org/10.1371/journal.pone.0011287
  19. Rosales-Mendoza, S., Nieto-Gómez, R., & Angulo, C. (2017). A Perspective on the Development of Plant-Made Vaccines in the Fight against Ebola Virus. Frontiers in Immunology, 8. Frontiers Research Foundation. https://doi.org/10.3389/fimmu.2017.00252
  20. Ruiz, V., Mozgovoj, M. V., Dus Santos, M. J., & Wigdorovitz, A. (2015). Plant-produced viral bovine vaccines: what happened during the last 10 years? Plant Biotechnology Journal, 13(8), 1071–1077. https://doi.org/10.1111/pbi.12440
  21. Rybicki, E. (2018). History and Promise of Plant-Made Vaccines for Animals. Prospects of Plant-Based Vaccines in Veterinary Medicine, 1–22. https://doi.org/10.1007/978-3-319-90137-4_1
  22. Santi, L. (2009). Plant derived veterinary vaccines. Veterinary Research Communications, 33(S1), 61–66. https://doi.org/10.1007/s11259-009-9246-z
  23. Sander, V. A., Corigliano, M. G., & Clemente, M. (2019). Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Frontiers in Veterinary Science, 6. https://doi.org/10.3389/fvets.2019.00020
  24. Shim, B. S., Hong, K. J., Maharjan, P. M., & Choe, S. (2019). Plant factory: New resource for the productivity and diversity of human and veterinary vaccines. Clinical and Experimental Vaccine Research, 8(2), 136–139. https://doi.org/10.7774/cevr.2019.8.2.136
  25. Su, H., Yakovlev, I. A., van Eerde, A., Su, J., & Clarke, J. L. (2021). Plant-Produced Vaccines: Future Applications in Aquaculture. Frontiers in Plant Science, 12. Frontiers Media S.A. https://doi.org/10.3389/fpls.2021.718775
  26. Takeyama, N., Kiyono, H., & Yuki, Y. (2015). Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Therapeutic Advances in Vaccines, 3(5-6), 139–154. https://doi.org/10.1177/2051013615613272
  27. Torres, J. R. (2015). Cysticercosis Disease Burden in Latin America. Neglected Tropical Diseases, 225–232. https://doi.org/10.1007/978-3-7091-1422-3_12
  28. Wirz, H., Sauer-Budge, A. F., Briggs, J., Sharpe, A., Shu, S., & Sharon, A. (2012). Automated Production of Plant-Based Vaccines and Pharmaceuticals. Journal of Laboratory Automation, 17(6), 449–457. https://doi.org/10.1177/2211068212460037
  29. Zahmanova, G., Takova, K., Valkova, R., Toneva, V., Minkov, I., Andonov, A., & Lukov, G. L. (2022). Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life, 12(2), 156. https://doi.org/10.3390/life12020156
  30. Zhou, J.-Y., Cheng, L.-Q., Zheng, X.-J., Wu, J.-X., Shang, S.-B., Wang, J.-Y., & Chen, J.-G. (2004). Generation of the transgenic potato expressing full-length spike protein of infectious bronchitis virus. Journal of Biotechnology, 111(2), 121–130. https://doi.org/10.1016/j.jbiotec.2004.03.012