Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 6 No. 18 Septiembre - Diciembre 2020

Tissue engineering: hand in hand with interfering ribonucleic acids and Piwi expression

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2020.18.247
Submitted
October 25, 2020
Published
September 15, 2020

Abstract

Tissue engineering is one of the new branches of medicine that focuses on the development of whole tissues and organs from cell cultures. However, current techniques fail to meet all the requirements of the healthcare system in terms of organ transplantation since, to a large extent, the creation of tissues and biological structures in vitro involves extensive knowledge of the cell to ensure that it survives, grows and eventually stimulates its functionality. Accordingly, piRNAS and all the biomolecular pathways associated with PIWI represent an innovative solution to the problem of tissue transplantation based on specific techniques that involve cell differentiation and division to regenerate and create a portion of or whole tissues and organs.

References

  1. Aravin, A. A.; Naumova, N. M.; Tulin, A. V.; Vagin, V. V.; Rozovsky, Y. M. y Gvozdev, V. A. (2001). Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Current Biology. Science Direct. Sitio de Internet: https://www.sciencedirect.com/science/article/pii/S0960982201002998.
  2. Ashe, A.; Sapetschnig, A.; Weick, E.-M.; Mitchell, J.; Bagijn, M. P.; Cording, A. C.; Doebley, A.-L.; Goldstein, L. D.; Lehrbach, N. J.; Le Pen, J. et al. (2012). piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell, 150, 88-99. Sitio de Internet: https://www.sciencedirect.com/science/article/pii/S0092867412007696.
  3. Cora, E.; Pandey, R. R.; Xiol, J.; Taylor, J.; Sachidanandam, R.; McCarthy, A. A. y Pillai, R. S. (2014). The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs. 24 de septiembre de 2019. Cold Spring Harbor Laboratory Press for the RNA Society. Sitio de Internet: https://rnajournal.cshlp.org/content/20/6/773.long.
  4. Daniel N. Cox, Anna Chao y Haifan Lin. (2000). PIWI encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. 7 de octubre de 2019. The Company of Biologists Limited. Sitio de Internet: https://dev.biologists.org/content/develop/127/3/503.full.pdf.
  5. Daniel N. Cox, Anna Chao, Jeff Baker, Lisa Chang, Dan Qiao y Haifan Lin. (1998). A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. 2019. Cold Spring Harbor Laboratory Press. Sitio de Internet: http://genesdev.cshlp.org/content/12/23/3715.short.
  6. Dasaradhi Palakodeti, Magda Smielewska y Brenton R. Graveley. (2008). The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA Society. Sitio de Internet: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390803/?report=reader#__ffn_sectitle.
  7. Health Resources and Services Administration. (2019). Estadísticas sobre la donación de órganos. https://donaciondeorganos.gov/estadísticas-historias/r6o/estadísticas.html.
  8. Hsueh-Yen Ku y Haifan Lin. (2014). PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. 2019. HHS AUTHOR MANUSCRIPT, National Science Review. Sitio de Internet: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265212/.
  9. Huang, X. A.; Yin, H.; Sweeney, S.; Raha, D.; Snyder, M. y Lin, H. (2013). A Major Epigenetic Programming Mechanism Guided by piRNAs. 24 de septiembre de 2019. Elsevier Inc. Sitio de Internet: https://www.ncbi.nlm.nih.gov/pubmed/23434410.
  10. Julia Jehn, Daniel Gebert, Frank Pipilescu, Sarah Stern, Julian Simon, Thilo Kiefer, Charlotte Hewel y David Rosenkranz. (2018). Conserved and ubiquitous expression of piRNAs and PIWI genes in mollusks antedates the origin of somatic PIWI/piRNA expression to the root of bilaterians. 2019. Communications Biology. Sitio de Internet: https://www.biorxiv.org/content/early/2018/01/19/250761.full.pdf.
  11. Julia Verena Hartig, Yukihide Tomari y Klaus Förstemann. (2007). piRNAs—the ancient hunters of genome invaders. Genes & Dev. 21: 1707-1713. Sitio de Internet: http://genesdev.cshlp.org/content/21/14/1707.long.
  12. Juliano, Celina; Wang, Jianquan y Lin, Haifan. (2011). Uniting Germline and Stem Cells: The Function of Piwi Proteins and the piRNA Pathway in Diverse Organisms. Annual Review of Genetics, 45, 447-469. Sitio de Internet: https://www.proxydgb.buap.mx:2126/doi/abs/10.1146/annurev-genet-110410-132541.
  13. Julius Brennecke, Alexei A. Aravin, Alexander Stark, Manolis Kellis, Ravi Sachidanandam y Gregory J. Hannon. (2007). Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila. Cell. Sitio de Internet: https://doi.org/10.1016/j.cell.2007.01.043.
  14. Kara Rogers. (2018). Tissue engineering. Encyclopædia Britannica. Fecha de consulta: 8 de noviembre de 2019. Sitio de Internet: https://www.britannica.com/science/tissue-engineering.
  15. Le Thomas, A.; Tóth, K. F. y Aravin A. A. (2014). To be or not to be a piRNA: genomic origin and processing of piRNAs. 24 de septiembre de 2019. Genome Biology. Sitio de Internet: https://genomebiology.biomedcentral.com/articles/10.1186/gb4154.
  16. Patricia Rojas-Ríos y Martine Simonelig. (2018). piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. 2019. The Company of Biologists Ltd. Sitio de Internet: https://dev.biologists.org/content/145/17/dev161786.
  17. Roovers, E. F.; Rosenkranz, D.; Mahdipour, M.; Han, C. T.; He, N.; Chuva de Sousa Lopes, S. M.; van der Westerlaken, L. A.; Zischler, H.; Butter, F.; Roelen, B. A. y Ketting, R. F. (2015). Piwi proteins and piRNAs in mammalian oocytes and early embryos. 24 de septiembre de 2019. Elsevier Inc. Sitio de Internet: https://doi.org/10.1016/j.celrep.2015.02.062.
  18. Sánchez Alvarado, A. (2006). Planarian regeneration: its end is its beginning. 1 de noviembre de 2019. Leading Edge Essay. Sitio de Internet: https://www.cell.com/action/showPdf?pii=S0092-8674%2806%2900060-2.
  19. Sánchez Alvarado, A. y Yamanaka, S. (2014). Rethinking differentiation: stem cells, regeneration, and plasticity. 28 de octubre de 2019. Leading Edge Review. Sitio de Internet: https://www.cell.com/action/showPdf?pii=S0092-8674%2814%2900282-7.
  20. Shane T. Grivna, Ergin Beyret y Haifan Lin. (2006). A novel class of small RNAs in mouse spermatogenic cells. Cold Spring Harbor Laboratory Press. Sitio de Internet: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1522066/?report=reader#_ffn_sectitle.
  21. Sneha Ramesh Mani y Celina E. Juliano. (2013). Untangling the Web: The Diverse Functions of the PIWI/piRNA Pathway. NIH Public Access. Sitio de Internet: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234069/pdf/nihms598003.pdf.
  22. The ENCODE Project Consortium. (2012). An integrated encyclopedia of DNA elements in the human genoma. Nature. Sitio de Internet: https://www.ncbi.nlm.nih.gov/pubmed/22955616.
  23. V. Cecilia Fabres. (2010). Técnicas del futuro: ingeniería de tejidos y uso de células madre en medicina reproductiva. Revista Médica Clínica Las Condes, Vol. 21, No. 3, pp. 488-493. Sitio de Internet: https://www.sciencedirect.com/science/article/pii/S0716864010705629.
  24. Yuka W. Iwasaki, Mikiko C. Siomi y Haruhiko Siomi. (2015). PIWI-Interacting RNA: Its Biogenesis and Functions. Annual Review of Biochemistry, 2015, 84: 1, 405-433. Sitio de Internet: https://www.proxydgb.buap.mx:2126/doi/pdf/10.1146/annurev-biochem-060614-034258.