RD-ICUAD Año 11, No. 32, 2025, pp. 150 - 160 ISSN 2448-5829

CHERNÓBIL COMO UN LABORATORIO NATURAL: LA ECOLOGÍA DE UNA ZONA PROHIBIDA

CHERNOBYL AS A NATURAL LABORATORY: ECOLOGY IN A RESTRICTED ZONE

Roberto Espinosa-Hernández Tamara Castillo-Montero Barbara Moquel*

> Universidad de las Américas Puebla, Escuela de Ciencias, Departamento de Ciencias Químico-Biológicas, Ex Hacienda Santa Catarina Mártir, C.P. 72810, San Andrés Cholula, Puebla, México.

> > *Autor de correspondencia: barbara.moguel@udlap.mx jose.espinosahe@udlap.mx tamara.castillomo@udlap.mx

> > > https://orcid.org/0009-0004-0476-999X https://orcid.org/0009-0004-8615-8171 https://orcid.org/0000-0002-4489-0055

> > > > Recibido 25/junio/2025 Revisado: 6/agosto/2025 Publicado 30/agosto/2025 A11N91.25/1007

Resumen

Tras el accidente nuclear de Chernóbil en 1986. los ecosistemas de la Zona de Exclusión experimentaron efectos graves como la muerte masiva de árboles, la reducción de la biodiversidad vegetal y la alteración de las cadenas alimenticias. Sin embargo, con el paso de los años, surgieron evidencias de adaptación biológica, reorganización trófica y recuperación funcional. Este trabajo analiza cómo la naturaleza se ha reestructurado en Chernóbil desde una perspectiva ecológica, utilizando conceptos como el cambio continuo, la sucesión ecológica, los flujos de energía y los controles tróficos. Se incluyen estudios de caso como el cambio en los modos de reproducción de oligoquetos, la aparición de adaptaciones epigenéticas en plantas y animales, y el papel de los hongos radiotróficos que metabolizan radiación a través de radiosíntesis. Además, se utilizó análisis de imágenes satelitales NDVI de 1991, 2017 y 2025 para evaluar la recuperación de la cobertura vegetal. Los resultados muestran un aumento sostenido en la densidad de vegetación y la recolonización del área por especies silvestres, lo que evidencia la resiliencia de los ecosistemas. Este ensayo posiciona a Chernóbil como una zona de estudio para comprender cómo los seres vivos responden y se reorganizan frente a desastres.

Palabras clave: Chernóbil, radionúclidos, sucesión ecológica, cambio continuo, Zona de Exclusión de Chernóbil, cadena trófica, adaptación.

Abstract

Following the 1986 Chernobyl nuclear accident, ecosystems within the Exclusion Zone experienced severe effects such as mass tree mortality. a reduction in plant biodiversity, and disruption of food chains. However, over time, evidence of biological adaptation, trophic reorganization, and functional recovery emerged. This study analyzes how nature has restructured in Chernobyl from an ecological perspective, using concepts such as continuous change, ecological succession, energy flow, and trophic controls. Case studies include changes in oligochaete reproductive strategies, the emergence of epigenetic adaptations in plants and animals, and the role of radiotrophic fungithat metabolize radiation through radiosynthesis. Additionally, NDVI satellite imagery from 1991, 2017, and 2025 was used to assess vegetation recovery. Results show a sustained increase in vegetation density and the recolonization of the area by wild species, demonstrating the resilience of ecosystems. This essay positions Chernobyl as a study area for understanding how living organisms respond and reorganize in the face of disasters.

Keywords: Chernobyl, radionuclides, ecological succession, continuous change, Chernobyl Exclusion Zone, food chain, adaptation.

Introducción

Figura 1. Ubicación de la planta nuclear de Chernobyl, Ucrania. Elaboración propia.

El 26 de abril de 1986 ocurrió un accidente en la Central Nuclear de Chernóbil. en Ucrania (Figura 1). Este evento sigue siendo el desastre nuclear más grave registrado y uno de los mayores desastres ambientales provocados por el ser humano (Crea, 2022). Cerca del 95% del territorio ucraniano experimentó altos niveles de contaminación radioactiva, alcanzándose actividades de partículas en el aire hasta un millón de veces superiores a los niveles previos al accidente (Arestov et al., 2024: Yablokov et al., 2009). Esta liberación causó una contaminación extensa y desigual del área, provocando diferentes respuestas biológicas complejas que impactaron desde células individuales (nivel celular y molecular) hasta ecosistemas enteros (Chernobyl Forum Expert Group 'Environment' & Vienna: International Atomic Energy Agency, 2006; Geras'kin et al., 2006).

El accidente ocurrió en una zona con un ecosistema muy activo, permitiendo observar dos tipos de efectos: efectos agudos, que hacen referencia a efectos inmediatos, como la muerte de organismos o pérdida de capacidades reproductivas y efectos a largo plazo, como cambios en la biodiversidad o anomalías genéticas (Geras'kin et al., 2006). Los organismos más afectados se encontraban en el área más cercana al reactor, también conocida como la Zona de Exclusión de Chernóbil, un área de 30 km alrededor del lugar del accidente (Geras'kin et al., 2006). Entre los impactos más severos se destaca la muerte de 600 hectáreas de árboles como pinos, abetos y la disminución drástica en la densidad de las plantas (Geras'kin et

al., 2006). Por ejemplo, en 1987 (dos años después del accidente), en el pueblo de Yanov, la vegetación se redujo de 740 a 310 plantas por metro cuadrado (Santos et al., 2019: Geras'kin et al., 2006).

Los primeros 10-20 días después del accidente fueron los más peligrosos para la comunidad biológica, debido a la liberación de radionúclidos de vida corta como el Cesio-137 (Cs-137) y el Estroncio-90 (Sr-90) (Yablokov et al., 200). Los radionúclidos son elementos químicos que al estar llenos de radioactividad son inestables. v conforme liberan esa radioactividad se vuelven estables (Diccionario de Cáncer del NCI, s.f.). Estos elementos se acumularon en el suelo, cuerpos de agua y los organismos vivos, provocando una contaminación continua de los ecosistemas acuáticos (Yablokov et al., 2009). Aunque la contaminación inicial de lagos y ríos fue elevada debido a la deposición directa, ésta disminuyó rápidamente por procesos de dilución, degradación física y, sobre todo, por absorción en los suelos, que funcionaron como depósitos radioactivos de largo plazo (Chernobyl Forum Expert Group 'Environment' & Vienna: International Atomic Energy Agency, 2006). No obstante, estos radionúclidos* continuaron migrando verticalmente en el suelo a un ritmo de 2 a 4 cm al año, afectando a las plantas con raíces profundas que, al crecer, reintroducen estos contaminantes a la superficie (Yablokov et al., 2009).

Figura 2. Cultivo de Cladosporium cladosporioides. Retraído de: https://www.adelaide.edu.au

A pesar de este escenario hostil, la vida encontró formas de adaptarse. Algunos organismos no solo sobrevivieron, sino que prosperaron. Entre ellos se destacan varios hongos radiotróficos como Cladosporium sphaerospermum, Cryptococcus neoformans y Wangiella dermatitidis, capaces de usar la radiación como fuente de energía a través de un proceso conocido como radiosíntesis (Ledford, 2007: Tugay et al., 2011). El éxito que tuvieron al adaptarse ha despertado mucho interés en la comunidad científica ya que tiene un potencial para aplicaciones biotecnológicas y para limpiar el ambiente, también conocido como biorremediación (Ledford. 2007: Harms et al., 2011).

Este artículo analiza cómo la Zona de Exclusión de Chernóbil ha cambiado en cobertura vegetal entre 1991, 2017 y 2025, utilizando herramientas ecológicas y mapas satelitales en formato NDVI (Índice de Vegetación de Diferencia Normalizada), para comprender cómo se reorganiza y adapta la naturaleza frente a condiciones extremas. Además de poder investigar la dinámica de los ecosistemas perturbados, especialmente la sucesión ecológica, los flujos de energía, los controles tróficos y el concepto de cambio continuo en la naturaleza, que se explicarán más adelante.

Desarrollo

1. Cambio continuo en ecosistemas pertubados

Después de una perturbación tan severa como el accidente nuclear de Chernóbil, los ecosistemas no pueden quedarse igual, necesitan transformarse para poder seguir funcionando, tanto a **nivel biológico** (organismos vivos como plantas, animales y microorganismos) como a nivel funcional (ciclos de nutrientes y energía) (Gurevitch et al., 2020). Este tipo de respuesta implica una reorganización constante de las especies, sus interacciones y funciones. En ecología, a este proceso de adaptación constante se le conoce como **cambio continuo** (Gurevitch et al., 2020).

Algunos gusanos planos (como los oligoquetos) pueden reproducirse asexualmente partiéndose en dos... jy cada mitad regenera el cuerpo completo! Una evidencia clara de este cambio continuo se observó en varios organismos de Chernóbil. Específicamente en los gusanos acuáticos llamados oligoquetos (Geras'kin et al., 2006). Normalmente estos gusanos se reproducen de forma asexual, lo que quiere decir que no necesitan a otro individuo para reproducirse, crean una réplica o copia exacta de su genética (Equipo editorial, Etecé, 2024; Geras'kin et al., 2006). Sin embargo, en un depósito artificial de agua cercano a Yanov, la radiación alcanzó los 0.34 mGy/día, lo que aumentó la reproducción sexual en estos organismos (Geras'kin et al., 2006). Este cambio permitió que la población pudiera adaptarse al nuevo ambiente, ya que desarrollaron diversidad genética, una combinación única de genes por individuo (Geras'kin et al., 2006; Diversidad Genética, 2024). Un Gray (Gy) es una unidad derivada del Sistema Internacional de Unidades que mide la dosis absorbida de radiaciones ionizantes por un determinado material. Un m/Gy es una unidad de absorción de la radiación equivalente a la milésima parte de un gray, o 0.1 rad (U.S.NRC, 2021; Radiological Society of North America (RSNA) and American College of Radiology (ACR), n.d.).

Figura 3. Imagen de oligoqueto. Retraído de: https://ecuador.inaturalist.org/

Algo similar ocurrió con muchas plantas v animales expuestos a radiación. Algunos estudios a largo plazo demostraron que varias especies desarrollaron adaptaciones genéticas y epigenéticas, es decir, que el entorno tiene un impacto en los genes que se activan o desactivan. aumentando su resistencia a la radiación (Chernobyl Forum Expert Group 'Environment' & Vienna: International Atomic Energy Agency, 2006; Geras'kin et al., 2006; Anzilotti, 2022). En otras palabras, las poblaciones más resistentes lograron sobrevivir y reproducirse, a este fenómeno se le conoce como selección natural v es el principal motor del cambio continuo (Domínguez et al., 2008).

2. Sucesión ecológica post-radiación

Cuando nuevas especies empiezan a colonizar y reemplazar a otras que desaparecieron, se le denomina sucesión ecológica (Gurevitch et al., 2020). Esta sucesión ocurre de forma lenta y progresiva, y el resultado depende de qué tan rápido se logren adaptar las nuevas especies al entorno, por el tipo de perturbación, disponibilidad de nutrientes y capacidad para colonizar (Gurevitch et al., 2020).

Como se mencionó anteriormente. las zonas más afectadas, como los bosques de pino o de abeto murieron a causa de una dosis letal de radiación (Geras'kin et al., 2006; Santos et al., 2019). En su lugar, comenzaron a crecer especies como los abedules, álamos y robles, estos toleraban mejor los cambios en el suelo y el aire (Geras'kin et al., 2006; Santos et al., 2019; Chernobyl Forum Expert Group 'Environment' & Vienna: International Atomic Energy Agency, 2006), Estos cambios también se notaron en campos agrícolas abandonados en donde surgieron especies silvestres de hierbas y pastos que atrajeron a insectos adaptados, como saltamontes y grillos (Geras'kin et al., 2006; Santos et al., 2019; Chernobyl Forum Expert Group 'Environment' & Vienna: International Atomic Energy Agency, 2006).

Un caso interesante dentro de esta sucesión fue el de los hongos radiotróficos como Cladosporium sphaerospermum,- Cryptococcus neoformans y Wangiella dermatitidis (Ledford, 2007). Estos organismos se adaptaron para poder generar energía y una fuente de alimentación con base en la radiación (Ledford, 2007). Su pigmento oscuro, la melanina, les permitió protegerse de la radiación, ya que cambiaba sus propiedades aumentando la capacidad para transferir electrones v activar rutas metabólicas (Dadachova et al., 2007). Al poder alimentarse de la radiación, crecieron incluso sin tantos nutrientes en el suelo (Dadachova et al., 2007; Geras'kin et al., 2006; Tugay et al., 2011). Estos organismos se volvieron clave en las primeras etapas de la sucesión, ayudando a descomponer materia orgánica v facilitar el regreso de otras formas de vida (Kałucka & Jagodziński, 2017). La melanina es tan efectiva absorbiendo energía que los científicos están investigando su uso como protección contra la radiación en futuras misiones espaciales.

3. Controles tróficos y reorganización de cadenas alimenticias

Los controles tróficos determinan cómo fluye la energía entre los diferentes niveles de la cadena alimenticia, desde los productores primarios (como las plantas), los consumidores primarios y secundarios (como herbívoros y carnívoros), hasta los descomponedores (como microorganismos y hongos) (Reichle, 2019). Estos controles pueden ser desde arriba (por los depredadores que limitan a sus presas) o desde abajo (por la disponibilidad de recursos) (Reichle, 2019).

La muerte de árboles, como los mencionados anteriormente, especialmente de zonas con dosis de radiación de hasta 17 mGy/día, provocó una fuerte caída en la **productividad primaria** (Geras'kin et al., 2006; Santos et al., 2019; Chernobyl Forum Expert Group 'Environment' & Vienna: International Atomic Energy Agency, 2006). Esto quiere decir que había menos alimento y energía disponible para los consumidores primarios (herbívoros e insectos), lo que interrumpió las **cadenas alimenticias** desde la base (Reichle, 2019).

Además, algunas plantas expuestas a dosis entre 3.8 y 5.2 Gy mostraron **esterilidad parcial o total**, con daños visibles en flores y estructuras reproductivas (Geras'kin et al., 2006). Esta interrupción en su ciclo reproductivo provocó que hubiera un decrecimiento en su población, **bloqueando el flujo de energía** (Figura 4) (Reichle, 2019; Geras'kin et al., 2006).

Con la desaparición de los humanos, el estresor natural desapareció (Chernobyl Forum Expert Group 'Environment' & Vienna: International Atomic Energy Agency, 2006). Lo que provocó que ciertas especies se extendieran sin restricciones. Tales como el jabalí, los alces. los lobos y roedores, ocupando nuevos hábitats y modificando el equilibrio trófico (Geras'kin et al., 2006). También se observaron casos de desincronización biológica, esto se refiere a cuando el reloi biológico interno de los organismos no está alineado con las señales ambientales externas (Delgado et al., 2009), como desfases entre el brote de las plantas y la eclosión de insectos que dependen de ellas, esto afectó los ritmos normales de interacciones ecológicas (Geras'kin et al.. 2006).

Figura 4. Ejemplo de flujo de energía. Creación propia.

Los descomponedores, como los hongos melanizados o radiotróficos, jugaron un papel muy importante en el reciclaje y descomposición de materia orgánica (Tugay et al., 2011). Esto los convierte en nuevos vectores energéticos, lo que quiere decir que son capaces de sostener otras formas de vida microscópica en condiciones donde la fotosíntesis ya no es posible o es muy limitada (Kałucka & Jagodziński, 2017; Geras'kin et al., 2006; Tugay et al., 2011).

4. Análisis de imagenes satelitales NVDI

Figura 5. Ejemplo de recuperación de la vegetación. Creación propia.

Los Índices de Vegetación de Diferencia Normalizada (por sus siglas en inglés, NDVI), son herramientas ecológicas que nos ayudan a comprender cómo se organiza y adapta la vegetación frente a condiciones extremas. El uso de esta herramienta permitió evaluar los cambios en la densidad vegetal dentro de la Zona de Exclusión de Chernóbil en tres años: 1991, 2017 y 2025. Las imágenes muestran un patrón de aumento en la densidad vegetal con el paso del tiempo (Figura 5).

En 1991, cinco años después del accidente, predominaban los valores de vegetación baja y baja-moderada, con extensas áreas sin cobertura vegetal, probablemente debido a la radiación aguda y destrucción directa del ecosistema (Geras'skin et al., 2006; Figura 6).

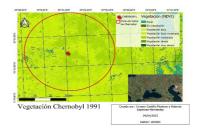
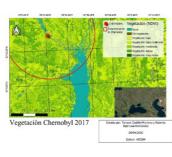



Figura 6. Densidad de vegetación en 1991 dentro de la Zona de Exclusión de Chernóbil. El color verde limón hace referencia a "vegetación baja". Creación propia.

En 2017, la vegetación mostró buena recuperación, gran parte del paisaje dentro de la zona presenta **vegetación baja-moderada a moderada**, especialmente hacia el sur, suroeste y noroeste del área de exclusión (Figura 7).

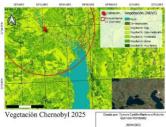


Figura 7. Densidad de vegetación en 2017 y 2025 dentro de la Zona de Exclusión de Chernóbil.

En el año 2025 se muestra un incremento de vegetación moderada a densa, con pequeños parches de vegetación muy densa, en las mismas zonas que en 2017 (Figura 7). Este incremento gradual puede deberse a la sucesión ecológica y a la ausencia de perturbaciones humanas.

Como se mencionó anteriormente, la desaparición del ser humano permitió que plantas **resistentes** a suelos contaminados, como álamo, abedules y especies herbáceas silvestres, colonizaran los espacios abandonados (Santos et al., 2019; Chernobyl Forum Expert Group 'Environment' & Vienna: International Atomic Energy Agency, 2006). Así como adaptaciones **genéticas y epigenéticas**, que favorecieron la supervivencia de estas especies, a pesar de los niveles altos de radiación (Anzilotti, 2022).

Conclusión

El accidente nuclear de Chernóbil, en Ucrania continúa siendo el más grave registrado en la historia de la humanidad y uno de los más grandes desastres ambientales provocados por el ser humano (Crea. 2022). Este evento causó una contaminación extensa, provocando diferentes respuestas biológicas que impactaron desde células hasta ecosistemas enteros (Chernobyl Forum Expert Group 'Environment' & Vienna: International Atomic Energy Agency, 2006; Geras'kin et al., 2006). Los organismos más afectados se encontraban dentro de la Zona de Exclusión de Chernóbil, donde los radionúclidos de vida corta representaron el mayor peligro para la comunidad biológica. Sin embargo, organismos como hongos radiotróficos y gusanos oligoquetos fueron capaces de adaptarse a las nuevas condiciones gracias a sus características, volviéndose clave en las primeras etapas de la sucesión ecológica y siendo un claro ejemplo de cambio continuo.

A través del uso de NDVI se pudo observar la gradual recolonización de las plantas gracias a su capacidad de adaptación y a la ausencia del humano, lo cual tuvo como consecuencia la reestructuración de las cascadas tróficas (Figura 8), ya que ciertas especies como jabalíes o lobos pudieron extenderse sin límites ocupando nuevos hábitats.

Chernóbil es un ejemplo claro de cómo los organismos continúan y se adaptan a pesar de sufrir catástrofes inmensas. Estudiar este tipo de casos nos abre la puerta a posibles aplicaciones biotecnológicas y astrobiológicas tanto para la remediación de ecosistemas con radiación nuclear u otros contaminantes, como para proimas exploraciones especiales.

Figura 8: Ejemplo de cadena trófica. Creación propia.

Conflicto de intereses

Los autores de este manuscrito declaran no tener ningún tipo de conflicto de interés.

Declaración de privacidad

Los datos de este artículo, así como los detalles técnicos para la realización del experimento, se pueden compartir a solicitud directa con el autor de correspondencia. Los datos personales facilitados por los autores a RD-ICUAP se usarán exclusivamente para los fines declarados por la misma, no estando disponibles para ningún otro propósito ni proporcionados a terceros.

Agradecimientos

Expresamos nuestra gratitud a la Dra. Barbara Moguel por su invaluable guía y apoyo a lo largo de este proyecto. Al igual, agradecemos a la Universidad de las Américas Puebla, por proveer los recursos e instalaciones necesarias. Reconocemos el uso de Copernicus Browser para la realización de los análisis NDVI, así como, el uso de QGIS para la elaboración de mapas. Este artículo no hubiera sido posible sin sus valiosas contribuciones.

Referencias

- Arestov, S., Bunyakova, Y., & Popova, M. (2024). Ecological and economic consequences of the accident at the Chernobyl Nuclear Power Plant and prospects for the development of tourism in the region. Market Infrastructure, 77. https://doi.org/10.32782/infrastruct77-11
- Anzilotti, A. W. (2022). Epigenética. Nemours. https://kidshealth.org/es/parents/about-epigenetics.html
- Chernobyl Forum Expert Group 'Environment', & Vienna: International Atomic Energy Agency. (2006). Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience (ISSN 1020-6566). International Atomic Energy Agency. https://www-pub.iaea.org/MTCD/Publications/PDF/ Pub1239_web.pdf
- Crea, J. A. (2022). Chernóbil: Daño y responsabilidad de la mayor catástrofe nuclear al renacer ambiental. Revista Iberoamericana de Derecho, Cultura y Ambiente. https:// aidca.org/wp-content/uploads/2022/06/RIDCA1-Chernobil-Dano-y-responsabilidad-De-la-mayor-catastrofe-nuclear-al-renacer-ambiental-AMBIENTAL.pdf
- Dadachova, E., Bryan, R. A., Huang, X., Moadel, T., Schweitzer, A. D., Aisen, P., Nosanchuk, J. D., & Casadevall, A. (2007). Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE, 2(5), e457. https://doi.org/10.1371/ journal.pone.0000457
- Delgado, R. C. S., Pardo, B. F., & Briones, C. E. (2009). Internal desynchrony as promotor of disease and behavioral disturbance. Salud Mental, 32(1), 69-76. http://www. scielo.org.mx/pdf/sm/v32n1/v32n1a9.pdf
- Diccionario de cáncer del NCI. (s. f.). Cancer.gov. https:// www.cancer.gov/espanol/publicaciones/diccionarios/ diccionario-cancer/def/radionuclido
- Diversidad genética. (2024, febrero 14). Argentina.gob.ar. https://www.argentina.gob.ar/interior/ambiente/biodiversidad/genetica
- Domínguez, C. A., Fornoni, J., & Sosenski, P. (2008). ¿Qué es la selección natural? CIENCIA, 03(671). https:// www.revistaciencia.amc.edu.mx/images/revista/60_4/ PDF/03_671_SeleccionNatural.pdf
- Equipo editorial, Etecé. (2024, diciembre 25). Reproducción asexual - Qué es, tipos, ventajas y desventajas. Concepto. https://concepto.de/reproduccion-asexual/

- Geras'kin, S., Fesenko, S., & Alexakhin, R. (2006). Effects of non-human species irradiation after the Chernobyl NPP accident. Environment International, 34(6), 880-897. https://doi.org/10.1016/j.envint.2007.12.012
- Gurevitch, J., Scheiner, S. M., & Fox, G. A. (2020). Community dynamics and succession. En Oxford University Press eBooks. https://doi.org/10.1093/ hesc/9781605358291.003.0016
- Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9(3), 177-192. https://doi.org/10.1038/nrmicro2519
- Kałucka, I. L., & Jagodziński, A. M. (2017). Ectomycorrhizal fungi: A major player in early succession. En Springer eBooks (pp. 187-229). https://doi.org/10.1007/978-3-319-53064-2_10
- Ledford, H. (2007). Hungry fungi chomp on radiation. Nature. https://doi.org/10.1038/news070521-5
- Nación, L. (2020, diciembre 1). Un hongo de Chernobyl, la clave para proteger a los astronautas de la radiación en la misión a Marte. La Nación. https://www.lanacion.com. ar/tecnologia/un-hongo-chernobyl-clave-proteger-astronautas-radiacion-nid2405774/
- Radiological Society of North America (RSNA) & American College of Radiology (ACR). (s. f.). Radiologyinfo.org. https://www.radiologyinfo.org/
- Reichle, D. E. (2019). Food chains and trophic level transfers. En Elsevier eBooks (pp. 95–117). https://doi.org/10.1016/ b978-0-12-820244-9.00007-x
- Santos, P., Sillero, N. P., Boratyński, Z., & Teodoro, A. C. M. (2019). Landscape changes at Chernobyl. Proceedings, 6, 70. https://doi.org/10.1117/12.2532564
- Tugay, T. I., Zheltonozhskaya, M. V., Sadovnikov, L. V., Tugay, A. V., & Farfán, E. B. (2011). Effects of ionizing radiation on the antioxidant system of microscopic fungi with radioadaptive properties found in the Chernobyl exclusion zone. Health Physics, 101(4), 375-382. https://doi. org/10.1097/hp.0b013e3181f56bf8
- U.S. Nuclear Regulatory Commission (NRC). (2021). Gray (Gy). NRC Web. https://www.nrc.gov/reading-rm/basicref/glossary/gray-gy.html

- Yablokov, A. V., Nesterenko, V. B., & Nesterenko, A. V. (2009). Chapter III. Consequences of the Chernobyl catastrophe for the environment. Annals of the New York Academy of Sciences, 1181(1), 221–286. https://doi.org/10.1111/j.1749-6632.2009.04830. xxxxxxxxxla+p%C3%A9rdida+de+br%C3%BAjula,+An%C3%A1lisis+de+los+partidos+pol%C3%ADticos+en+M%C3%A9xico.pdf?sequence=2
- Santolaya, Machetti, P. (2015). Estado constitucional, derechos humanos, justicia y vida universitaria. Estudios en homenaje a Jorge Carpizo: Una Definición de Transfuguismo en México y en España. Universidad Nacional Autónoma de México; Instituto de Investigaciones Jurídicas. [Archivo PDF]. https://archivos.juridicas.unam.mx/www/bjv/libros/8/3845/25.pdf
- Sartori, G. (2005). Partidos y Sistemas de Partidos. Alianza Editorial. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ezequielsingman.files.wordpress. com/2017/03/sartori-partidos-y-sistemas-de-partidos. pdf
- Seijas Villadangos, E. (2002). Representación democrática, partidos políticos y tránsfugas. Teoría Y Realidad Constitucional: La regulación jurídica de los partidos políticos, (6), pp. 163-190. https://doi.org/10.5944/trc.6.2000.6523
- Velázquez Caballero, D. (2009). Transfuguismo político y realineamiento electoral en la Sierra Mixteca de Puebla 1989-2004. La construcción de la democracia local. [Tesis doctoral, Universidad Veracruzana]. Universidad Veracruzana Repositorio Institucional. https://cdigital.uv.mx/bitstream/handle/123456789/32597/velazquezcaballero.pdf?sequence=1&isAllowed=y
- Zamudio Sosa, A., & López Lena, M. M. (2022). Emociones, obligación moral y eficacia colectiva en la consulta popular para enjuiciar a expresidentes. Revista Digital Internacional De Psicología Y Ciencia Social: Reconceptualización social a través de la Ciencia, 8(01), pp. 22-41. https://doi.org/10.22402/j.rdipycs.unam.e.8.01