Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 8 No. 22 Enero - Abril 2022

Resistencia a antibióticos betalactámicos: situación actual y nuevas estrategias.

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2022.22.682
Submitted
December 14, 2021
Published
January 31, 2022

Abstract

Bacterial resistance to beta-lactam antibiotics represents nowadays and for our near future a worldwide problem, due to the appearance of an increasing number of mechanisms involved in such resistance in microorganisms of clinical interest such as Escherichia coli, Pseudomonas aeruginosa, and many others. Some of these mechanisms are widely understood; however, others still require the study of their functions and, above all, the development of methods to evade them. This article aims to review the mechanisms of bacterial resistance to beta-lactam antibiotics and the existing record of their implications around the world, as well as the prospects for the future. In addition to the problem of resistance, recent years have seen new challenges such as the transmission of Enterobacteria between owners and pets or the increasing in-hospital infections of bacteria resistant to beta-lactams, which are the first-line antibiotics to be prescribed in intensive care. Key strategies are currently being pursued to counteract the situation, such as better management of antimicrobial therapy, the development of new treatments from different approaches such as combinations of beta-lactams with beta-lactamase inhibitors or innovative uses of synthetic biology, accompanied by improved genetic profiling for proper detection of the resistance genes involved.

References

  1. Ayaz, M., Ullah, F., Sadiq, A., Ullah, F., Ovais, M., Ahmed, J., & Devkota, H. (2019) Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chemico-Biologial Interactions, 308(October), 294-303. https://doi.org/10.1016/j.cbi.2019.05.050
  2. Band, V. I., & Weiss, D. S. (2021). Heteroresistance to beta-lactam antibiotics may often be a stage in the progression to antibiotic resistance. PLoS Biology, 19(7), 3–5. https://doi.org/10.1371/journal.pbio.3001346
  3. Basetti, M., Welte, T., & Wunderink, R. (2016). Treatment of Gram-negative pneumonia in the critical care setting: is the beta-lactam antibiotic backbone broken beyond repair? Critical Care, 20(19), 1-9. DOI 10.1186/s13054-016-1197-5
  4. Bikard, D., Euler, C., Jiang, W., Nussenzweig, P., Goldberg, G., Duportet, X., Fischetti, V., & Marraffini, L. (2014). Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nature Biotechnology, 32(11):1146-50. doi: 10.1038/nbt.3043
  5. Bondi, A. y Dietz, C. (1949). Penicillin-resistant Staphylococci. British Medical Journal, 1(4604), 591–592. https://doi.org/10.1136/bmj.1.4604.591-c
  6. De La Fuente-Nuñez, C., Torres, M., Mojica, F., & Lu, T. (2017). Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Current Opinion in Microbiology, 37: 95–102. doi:10.1016/j.mib.2017.05.014
  7. Dewachter, L., Fauvart, M., & Michiels, J. (2019). Review Bacterial Heterogeneity and Antibiotic Survival : Understanding and Combatting Persistence and Heteroresistance. Molecular Cell, 76(2), 255–267. https://doi.org/10.1016/j.molcel.2019.09.028
  8. Doi, Y. (2019). Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clinical Infectious Diseases, 69(Suppl 7), S565–S575. https://doi.org/10.1093/cid/ciz830
  9. Donati, V., Feltrin, F., Hendriksen, R. S., Svendsen, C. A., Cordaro, G., García-Fernández, A., Lorenzetti, S., Lorenzetti, R., Battisti, A., & Franco, A. (2014). Extended-spectrum-beta-lactamases, AmpC beta-lactamases and plasmid mediated quinolone resistance in Klebsiella spp. from companion animals in Italy. PLoS ONE, 9(3), 1–7. https://doi.org/10.1371/journal.pone.0090564
  10. Fleming, A. (1945). Sir Alexander Fleming - Nobel Lecture: Penicillin. Nobel Lecture, December 11.
  11. Gastelo Acosta, R., y Maguiña Vargas, C. (2018). Mecanismos de resistencia bacteriana. Diagnóstico, 57(2), 82–86. https://doi.org/10.33734/diagnostico.v57i2.139
  12. Ghafourian, S., Sadeghifard, N., Soheili, S., & Sekawi, Z. (2015). Extended Spectrum Beta-lactamases: Definition, Classification and Epidemiology. Current issues in molecular biology, 17, 11–21
  13. Harada, K., Okada, E., Shimizu, T., Kataoka, Y., & Sawada, T. (2012). Comparative Immunology , Microbiology and Infectious Diseases Antimicrobial resistance , virulence profiles , and phylogenetic groups of fecal Escherichia coli isolates : A comparative analysis between dogs and their owners in Japan. “Comparative Immunology, Microbiology and Infectious Diseases,” 35(2), 139–144. https://doi.org/10.1016/j.cimid.2011.12.005
  14. Ho, S., Nguyen, L., Trinh, T., & MacDougall, C. (2019). Recognizing and Overcoming Resistance to New Beta-Lactam/Beta-Lactamase Inhibitor Combinations. Current Infectious Disease Reports, 21(39), 1-10. https://doi.org/10.1007/s11908-019-0690-9
  15. Johnson, J. R., Miller, S., Johnston, B., Clabots, C., & DebRoy, C. (2009). Sharing of Escherichia coli sequence type ST131 and other multidrug-resistant and urovirulent E. coli strains among dogs and cats within a household. Journal of Clinical Microbiology, 47(11), 3721–3725. https://doi.org/10.1128/JCM.01581-09
  16. Karaiskos, I., Lagou, S., Pontikis, K., Rapti, V., & Poulakou, G. (2019). The "Old" and the "New" antibiotics for MDR Gram-negative pathogens: For whom, when, and how. Frontiers in Public Health, 7(151), 1-25. DOI: 10.3389/fpubh.2019.00151
  17. Khalifa, H. O., Ahmed, A. M., Oreiby, A. F., Eid, A. M., Shimamoto, T., & Shimamoto, T. (2016). Characterisation of the plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli isolated from animals in Egypt. International Journal of Antimicrobial Agents, 47(5), 413–414. https://doi.org/10.1016/j.ijantimicag.2016.02.011
  18. Khalifa, H. O., Oreiby, A., El-Hafeez, A. A. A., Latif, A. A. El, Okanda, T., Kato, Y., & Matsumoto, T. (2021). High β-Lactam and Quinolone Resistance of Enterobacteriaceae from the Respiratory Tract of Sheep and Goat with Respiratory Disease. Physical Therapy Reviews, 11(1), 3–4. https://doi.org/10.1179/108331906X98985
  19. Khalifa, H. O., Oreiby, A. F., Okanda, T., Kato, Y., & Matsumoto, T. (2021). High β-lactam resistance in Gram-negative bacteria associated with kennel cough and cat flu in Egypt. Scientific Reports, 11(1), 1–9. https://doi.org/10.1038/s41598-021-82061-2
  20. Maeyama, Y., Taniguchi, Y., Hayashi, W., Ohsaki, Y., & Osaka, S. (2018). Prevalence of ESBL / AmpC genes and specific clones among the third- generation cephalosporin-resistant Enterobacteriaceae from canine and feline clinical specimens in Japan. Veterinary Microbiology Journal, 216(January), 183–189.
  21. Martínez,D. (2009). Betalactamasas tipo AmpC: Generalidades y métodos para detección fenotípica. Revista de la Sociedad Venezolana de Microbiología, 29(2), 78-83. Recuperado en 29 de noviembre de 2021, de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562009000200003&lng=es&tlng=es.
  22. Nordmann, P., & Poirel, L. (2019). Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. 69(Suppl 7), 521–528. https://doi.org/10.1093/cid/ciz824
  23. Noval, M., Banoub, M., Claeys, K., & Heil, E. (2020). The Battle Is on: New Beta-Lactams for the Treatment of Multidrug-Resistant Gram-Negative Organisms. Current Infectious Disease Reports, 22(1), 1-9. https://doi.org/10.1007/s11908-020-0710-9
  24. Ovejero, C. M., Escudero, J. A., Thomas-Lopez, D., Hoefer, A., Moyano, G., Montero, N., Martin-Espada, C., & Gonzalez-Zorn, B. (2017). Highly Tigecycline-Resistant Klebsiella pneumoniae Sequence Type 11 (ST11) and ST147 Isolates from Companion Animals. Antimicrobial Agents and Chemotherapy, 61(6), 1–6.
  25. Peacock, S. J., y Paterson, G. K. (2015). Mechanisms of Methicillin Resistance in Staphylococcus aureus.Annu. Rev. Biochem. 84:577–601. https://doi.org/10.1146/annurev-biochem-060614-034516
  26. Ruppé, É., Woerther, P. L., y Barbier, F. (2015). Mechanisms of antimicrobial resistance in Gram-negative bacilli. Annals of Intensive Care, 5(1). https://doi.org/10.1186/s13613-015-0061-0
  27. Suárez, C., y Gudiol, F. (2009). Beta-lactam antibiotics. Enfermedades Infecciosas y Microbiologia Clinica, 27(2), 116–129. https://doi.org/10.1016/j.eimc.2008.12.001
  28. Torres, M., Sothiselvam, S., Lu, T., & De La Fuente-Nuñez, C. (2019). Peptide Design Principles for Antimicrobial Applications. Journal of Molecular Biology, 431(18), 3547-3567. https://doi.org/10.1016/j.jmb.2018.12.015
  29. World Health Organization. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1