Skip to main navigation menu Skip to main content Skip to site footer

Articles

Año 8 No. 22 Enero - Abril 2022

Plants-based vaccines. New developments and emerging opportunities

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2022.22.681
Submitted
December 14, 2021
Published
January 31, 2022

Abstract

Plants throughout history have been used to obtain different compounds, called secondary metabolites, which are applied in different areas. However, currently plants have been used as bioreactors for the production of vaccines through genetic transformation mediated by Agrobacterium tumefaciens, since in this microorganism can be inserted genes of interest in the Ti plasmid to express a protein with vaccine potential. The microorganism will infect the plant causing tumors or cankers and also the metabolite of medical interest, some vaccines that have been manufactured in this way are Hepatitis B or currently against COVID-19. In addition, from the year 2018 multiple researches have been found in relation to this topic and also the production in the market is quite wide.

References

British American Tobacco. (2014). Chemical & Engineering News Archive, 92(43). https://doi.org/10.1021/cen-09243-ad02

Camacho-Escobar, M. A., Ramos-Ramos, D. A., Ávila-Serrano, N. Y., Sánchez-Bernal, E. I., & López-Garrido, S. J. (2020). Las defensas físico-químicas de las plantas y su efecto en la alimentación de los rumiantes. Revista Terra Latinoamericana, 38(2). https://doi.org/10.28940/terra.v38i2.629

Craven, J. (2021). COVID-19 Vaccine Tracker. COVID-19 Vaccne Tracker.

Gómez M. (2002). “La Producción de Vacunas y Otros Compuestos Farmacéuticos En Plantas Transgénicas.” Revista de La Sociedad Química de México 46(3):264–70.

Hodgins, B., Pillet, S., Landry, N., & Ward, B. J. (2019). A plant-derived VLP influenza vaccine elicits a balanced immune response even in very old mice with co-morbidities. PLoS ONE, 14(1). https://doi.org/10.1371/journal.pone.0210009

Holtz, B. R., Berquist, B. R., Bennett, L. D., Kommineni, V. J. M., Munigunti, R. K., White, E. L., Wilkerson, D. C., Wong, K. Y. I., Ly, L. H., & Marcel, S. (2015). Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals. In Plant Biotechnology Journal (Vol. 13, Issue 8). https://doi.org/10.1111/pbi.12469

Ishiura, S., & Yoshida, T. (2019). Plant-based vaccines for Alzheimer’s disease. In Proceedings of the Japan Academy Series B: Physical and Biological Sciences (Vol. 95, Issue 6). https://doi.org/10.2183/pjab.95.020

Kumar, A. U., Kadiresen, K., Gan, W. C., & Ling, A. P. K. (2021). Current updates and research on plant-based vaccines for coronavirus disease 2019. Clinical and Experimental Vaccine Research, 10(1). https://doi.org/10.7774/cevr.2021.10.1.13

Kumar, G., Karthik, L., & Rao, K. V. B. (2018). Plant vaccines: An overview. In Microbial Bioprospecting for Sustainable Development. https://doi.org/10.1007/978-981-13-0053-0_13
La producción de vacunas y otros compuestos farmacéuticos en plantas transgénicas. (2002). La Producción de Vacunas y Otros Compuestos Farmacéuticos En Plantastransgénicas, 46(3).

Laere, E., Ling, A. P. K., Wong, Y. P., Koh, R. Y., Mohd Lila, M. A., & Hussein, S. (2016). Plant-based vaccines: Production and challenges. In Journal of Botany (Vol. 2016). https://doi.org/10.1155/2016/4928637

Leblanc, Z., Waterhouse, P., & Bally, J. (2021). Plant-based vaccines: The way ahead? In Viruses (Vol. 13, Issue 1). https://doi.org/10.3390/v13010005

Lee, J. H., & Ko, K. (2017). Production of recombinant anti-cancer vaccines in plants. In Biomolecules and Therapeutics (Vol. 25, Issue 4). https://doi.org/10.4062/biomolther.2016.126

Ma, J. K., Lehner, T., Stabila, P., Fux, C. I., & Hiatt, A. (1994). Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants. European Journal of Immunology, 24(1). https://doi.org/10.1002/eji.1830240120

Maharjan, P. M., & Choe, S. (2021). Plant-based COVID-19 vaccines: Current status, design, and development strategies of candidate vaccines. In Vaccines (Vol. 9, Issue 9). https://doi.org/10.3390/vaccines9090992

Martínez-Villalobos, J. M., Garza-García, D. M., Viader-Salvadó, J. M., Guerrero-Olazarán, M., & Gallegos-López, J. A. (2020). Diseño in silico de una vacuna comestible contra el SARS-CoV-2 (Covid-19). Revista de Ciencias Farmaceúticas y Biomedicina (ISSN:2448-8380), 0(0).

Medicago. (2021). Medicago and GSK start phase 3 trial of adjuvanted COVID-19 vaccine candidate. March 16, 2021.

Pérez-Alonso, N., & Jiménez, E. (2011). Producción de metabolitos secundarios de plantas mediante el cultivo in vitro. Biotecnología Vegetal, 11(4).

Peyret, H., & Lomonossoff, G. P. (2013). The pEAQ vector series: The easy and quick way to produce recombinant proteins in plants. In Plant Molecular Biology (Vol. 83, Issues 1–2). https://doi.org/10.1007/s11103-013-0036-1
Ramalingaswami V. (1989). “Importance of Vaccines in Child Survival.” Clinical Infectious Diseases 11(3):489–501. doi: 10.1093/clinids/11.supplement_3.s498.

Reda, S. M., & Cant, A. J. (2015). La importancia de la vacunación y el tratamiento con inmunoglobulina para pacientes con inmunodeficiencias primarias. Acta Pediátrica de México, 36(2). https://doi.org/10.18233/apm36no2pp55-57

Rodriguez-Zapata, L., Chi, B., Acereto-Escoffié, P., Echeverria Suemy, E., & James kay, A. (2004). La bacteria Agrobacterium tumefaciens como herramienta biotecnológica. In Ciencia 55 (3):61-68. (Vol. 55).

Rybicki, E. P. (2010). Plant-made vaccines for humans and animals. In Plant Biotechnology Journal (Vol. 8, Issue 5). https://doi.org/10.1111/j.1467-7652.2010.00507.x

Shahid, N., Rao, A. Q., Kristen, P. E., Ali, M. A., Tabassum, B., Umar, S., Tahir, S., Latif, A., Ahad, A., Shahid, A. A., & Husnain, T. (2017). A concise review of poultry vaccination and future implementation of plant-based vaccines. In World’s Poultry Science Journal (Vol. 73, Issue 3). https://doi.org/10.1017/S0043933917000484

Shanmugaraj, B., Siriwattananon, K., Malla, A., & Phoolcharoen, W. (2021). Potential for developing plant-derived candidate vaccines and biologics against emerging coronavirus infections. In Pathogens (Vol. 10, Issue 8). https://doi.org/10.3390/pathogens10081051

Sharma, A. K., Jani, D., Raghunath, C., & Tyagi, A. K. (2004). Transgenic plants as bioreactors. In Indian Journal of Biotechnology (Vol. 3, Issue 2).

Smith, M. L., Mason, H. S., & Shuler, M. L. (2002). Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form. Biotechnology and Bioengineering, 80(7). https://doi.org/10.1002/bit.10444

Streatfield, S. J., & Howard, J. A. (2003). Plant-based vaccines. International Journal for Parasitology, 33(5–6), 479–493. https://doi.org/10.1016/S0020-7519(03)00052-3

Tiwari, S., Verma, P. C., Singh, P. K., & Tuli, R. (2009). Plants as bioreactors for the production of vaccine antigens. In Biotechnology Advances (Vol. 27, Issue 4). https://doi.org/10.1016/j.biotechadv.2009.03.006