Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Año 8 No. 23 Mayo - Agosto 2022

LOS SISTEMAS DE DETECCIÓN DE QUORUM (QUORUM SENSING) O CÓMO “SOCIALIZAN” LAS BACTERIAS

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2022.23.817
Enviado
junio 20, 2022
Publicado
junio 20, 2022

Resumen

Aunque por muchos años se pensó que era poco probable que las bacterias se comunicaran entre sí estableciendo un comportamiento “social”, numerosos estudios realizados en las tres últimas décadas revelaron que las bacterias si se comunican entre sí, y no solo eso, se pueden censar o contar. Los sistemas de comunicación que usan las bacterias para tal fin son llamados sistemas de Detección de Quorum (Quorum Sensing). En estos sistemas regularmente se usa una molécula señuelo conocida como autoinductor, la cual es producida individualmente por cada una de las células de la colonia. Después, el autoinductor  es transportado al exterior de la célula donde se acumula progresivamente al aumentar el número de bacterias de la colonia.  Cuando se alcanza una concentración alta del autoinductor, es detectado por unas moléculas receptoras especiales, que a su vez activan la expresión de genes que responden a la densidad celular de la colonia.

 

Citas

  1. Aframian, N., & Eldar, A. (2020). A Bacterial Tower of Babel: Quorum-Sensing Signaling Diversity and Its Evolution. Annual Review of Microbiology, 74(1), 587–606. https://doi.org/10.1146/annurev-micro-012220-063740
  2. Baltenneck, J., Reverchon, S., & Hommais, F. (2021). Quorum Sensing Regulation in Phytopathogenic Bacteria. Microorganisms, 9(2), 239. https://doi.org/10.3390/microorganisms9020239
  3. Banerji, R., Kanojiya, P., & Saroj, S. D. (2020). Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Critical Reviews in Microbiology, 46(2), 136–146. https://doi.org/10.1080/1040841x.2020.1735991
  4. Bassler, B. L. (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Current Opinion in Microbiology, 2(6), 582–587. https://doi.org/10.1016/s1369-5274(99)00025-9
  5. Bassler, B. L., Greenberg, E. P., & Stevens, A. M. (1997). Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. Journal of Bacteriology, 179(12), 4043–4045. https://doi.org/10.1128/jb.179.12.4043-4045.1997
  6. Bivar Xavier, K. (2018). Bacterial interspecies quorum sensing in the mammalian gut microbiota. Comptes Rendus Biologies, 341(5), 297–299. https://doi.org/10.1016/j.crvi.2018.03.006
  7. Bzdrenga, J., Daudé, D., Rémy, B., Jacquet, P., Plener, L., Elias, M., & Chabrière, E. (2017). Biotechnological applications of quorum quenching enzymes. Chemico-Biological Interactions, 267, 104–115. https://doi.org/10.1016/j.cbi.2016.05.028
  8. Chadha, J., Harjai, K., & Chhibber, S. (2021). Revisiting the virulence hallmarks of Pseudomonas aeruginosa : a chronicle through the perspective of quorum sensing. Environmental Microbiology. https://doi.org/10.1111/1462-2920.15784
  9. Duplantier, M., Lohou, E., & Sonnet, P. (2021). Quorum Sensing Inhibitors to Quench P. aeruginosa Pathogenicity. Pharmaceuticals, 14(12), 1262. https://doi.org/10.3390/ph14121262
  10. Eberhard, A., Burlingame, A. L., Eberhard, C., Kenyon, G. L., Nealson, K. H., & Oppenheimer, N. J. (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry, 20(9), 2444–2449. https://doi.org/10.1021/bi00512a013
  11. Engebrecht, J., Nealson, K., & Silverman, M. (1983). Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri. Cell, 32(3), 773–781. https://doi.org/10.1016/0092-8674(83)90063-6
  12. Engebrecht, J., & Silverman, M. (1984). Identification of genes and gene products necessary for bacterial bioluminescence. Proceedings of the National Academy of Sciences, 81(13), 4154–4158. https://doi.org/10.1073/pnas.81.13.4154
  13. Fan, Q., Wang, H., Mao, C., Li, J., Zhang, X., Grenier, D., Yi, L., & Wang, Y. (2022). Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. Journal of Agricultural and Food Chemistry, 70(2), 429–445. https://doi.org/10.1021/acs.jafc.1c04751
  14. Grandclément, C., Tannières, M., Moréra, S., Dessaux, Y., & Faure, D. (2015). Quorum quenching: role in nature and applied developments. FEMS Microbiology Reviews, 40(1), 86–116. https://doi.org/10.1093/femsre/fuv038
  15. Hawver, L. A., Jung, S. A., & Ng, W. L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews, 40(5), 738–752. https://doi.org/10.1093/femsre/fuw014
  16. Kalia, V. C. (2014). Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. Springer Publishing.
  17. Kleerebezem, M., Quadri, L. E. N., Kuipers, O. P., & de Vos, W. M. (1997). Quorum sensing by peptide pheromones and two‐component signal‐transduction systems in Gram‐positive bacteria. Molecular Microbiology, 24(5), 895–904. https://doi.org/10.1046/j.1365-2958.1997.4251782.x
  18. Miller, M. B., & Bassler, B. L. (2001). Quorum Sensing in Bacteria. Annual Review of Microbiology, 55(1), 165–199. https://doi.org/10.1146/annurev.micro.55.1.165
  19. Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System. Journal of Bacteriology, 104(1), 313–322. https://doi.org/10.1128/jb.104.1.313-322.1970
  20. Ng, W. L., & Bassler, B. L. (2009). Bacterial Quorum-Sensing Network Architectures. Annual Review of Genetics, 43(1), 197–222. https://doi.org/10.1146/annurev-genet-102108-134304
  21. Papenfort, K., & Bassler, B. L. (2016). Quorum sensing signal–response systems in Gram-negative bacteria. Nature Reviews Microbiology, 14(9), 576–588. https://doi.org/10.1038/nrmicro.2016.89
  22. Papon, N., & Stock, A. M. (2019). Two-component systems. Current Biology, 29(15), R724-R725. https://doi.org/10.1016/j.cub.2019.06.010
  23. Patankar, A. V., & González, J. E. (2009). Orphan LuxR regulators of quorum sensing. FEMS Microbiology Reviews, 33(4), 739–756. https://doi.org/10.1111/j.1574-6976.2009.00163.x
  24. Pollitt, E. J. G., West, S. A., Crusz, S. A., Burton-Chellew, M. N., & Diggle, S. P. (2014). Cooperation, Quorum Sensing, and Evolution of Virulence in Staphylococcus aureus. Infection and Immunity, 82(3), 1045–1051. https://doi.org/10.1128/iai.01216-13
  25. Prescott, R. D., & Decho, A. W. (2020). Flexibility and Adaptability of Quorum Sensing in Nature. Trends in Microbiology, 28(6), 436–444. https://doi.org/10.1016/j.tim.2019.12.004
  26. Rémy, B., Mion, S., Plener, L., Elias, M., Chabrière, E., & Daudé, D. (2018). Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00203
  27. Schaefer, A. L., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1996). Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proceedings of the National Academy of Sciences, 93(18), 9505–9509. https://doi.org/10.1073/pnas.93.18.9505
  28. Shah, N., Gislason, A. S., Becker, M., Belmonte, M. F., Fernando, W. G. D., & de Kievit, T. R. (2020). Investigation of the quorum-sensing regulon of the biocontrol bacterium Pseudomonas chlororaphis strain PA23. PLOS ONE, 15(2), e0226232. https://doi.org/10.1371/journal.pone.0226232
  29. Sikdar, R., & Elias, M. (2020). Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Review of Anti-infective Therapy, 18(12), 1221–1233. https://doi.org/10.1080/14787210.2020.1794815
  30. Tripathi, S., Chandra, R., Purchase, D., Bilal, M., Mythili, R., & Yadav, S. (2022). Quorum sensing - a promising tool for degradation of industrial waste containing persistent organic pollutants. Environmental Pollution, 292, 118342. https://doi.org/10.1016/j.envpol.2021.118342
  31. Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J., & Salmond, G. P. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiology Reviews, 25(4), 365–404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x
  32. Xu, G. (2019). Evolution of LuxR solos in bacterial communication: receptors and signals. Biotechnology Letters, 42(2), 181–186. https://doi.org/10.1007/s10529-019-02763-6

Artículos más leídos del mismo autor/a