Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Año 6 No. 16 Enero - Abril 2020

Hablemos de diabetes (Primera parte)

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2020.16.270
Enviado
noviembre 12, 2020
Publicado
enero 15, 2020

Resumen

La Federación Internacional de Diabetes (FID) define la diabetes mellitus, más conocida simplemente como “diabetes”, como una afección crónica que se produce cuando se dan niveles elevados de glucosa en sangre debido a la falta de insulina o la incapacidad de las células de responder ante la misma. En esta primera parte, se describe su clasificación y se abunda sobre las características de los tipos 1 y2. Se describe su diagnóstico y se presentan los principales actores de la patología. Finalmente se abordan las complicaciones de la enfermedad.

Citas

  1. Abdul-Ghani, M. A., Matsuda, M., Balas, B., & DeFronzo, R. A. (2007). Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care, 30(1), 89–94. https://doi.org/10.2337/dc06-1519
  2. Abdullah, K. M., Abul Qais, F., Hasan, H., & Naseem, I. (2019). Anti-diabetic study of vitamin B6 on hyperglycaemia induced protein carbonylation, DNA damage and ROS production in alloxan induced diabetic rats. Toxicology Research, 8(4), 568–579. https://doi.org/10.1039/c9tx00089e
  3. ADA. (2019). Standards of Medical Care in Diabetes -2019. Diabetes Care, 42(2), 204.
  4. Ahmed, N. (2005, January). Advanced glycation endproducts - Role in pathology of diabetic complications. Diabetes Research and Clinical Practice, Vol. 67, pp. 3–21. https://doi.org/10.1016/j.diabres.2004.09.004
  5. Arneth, B., Arneth, R., & Shams, M. (2019, May 18). Metabolomics of Type 1 and Type 2 Diabetes. International Journal of Molecular Sciences, Vol. 20. https://doi.org/10.3390/ijms20102467
  6. Arraiz, N., Leal, E., Linares, S., Mengual, E., Valdelamar, L., Seyfi, H., … Zulia, E. (2007). B iología m olecular de los t ransportadores de glucosa : clasificación , estructura y distribución. Archivos Venezolanos de Farmacologia y Terapeutica, 26(2), 76–86.
  7. Arranz Martín, A., Calle Pascual, A., del Cañizo Gómez, F. J., González Albarrán, O., Lisbona Gil, A., Botella Serrano, M., & Pallardo Sánchez, L. F. (2015). Estado actual de los sistemas de infusión subcutánea continua de insulina y monitorización continua de glucosa en la Comunidad de Madrid. Endocrinologia y Nutricion, 62(4), 171–179. https://doi.org/10.1016/j.endonu.2015.01.003
  8. Baker, J. R., Metcalf, P. A., Johnson, R., Newman, D., & Rietz, P. (1985). Use of Protein-BasedStandardsin Automated ColorimetricDeterminations of Fructosaminein Serum. In CLIN. CHEM (Vol. 31).
  9. Basuki, W., Hiromura, M., Adachi, Y., Tayama, K., Hattori, M., & Sakurai, H. (2006). Enhancement of insulin signaling pathway in adipocytes by oxovanadium(IV) complexes. Biochemical and Biophysical Research Communications, 349(3), 1163–1170. https://doi.org/10.1016/j.bbrc.2006.08.162
  10. Bowden, D. W., Qi, L., Du, M., Liou, G. I., Cheng, J., Spinedi, E., … Kautzky-willer, A. (2015). World Journal of. 9358(1), 1–216.
  11. Butterworth, P. J. (2005). Lehninger: principles of biochemistry (4th edn) D. L. Nelson and M. C. Cox, W. H. Freeman & Co., New York, 1119 pp (plus 17 pp glossary), ISBN 0-7167-4339-6 (2004). Cell Biochemistry and Function, 23(4), 293–294. https://doi.org/10.1002/cbf.1216
  12. Chatzigeorgiou, A., Halapas, A., Kalafatakis, K., & Kamper, E. (2009). The use of animal models in the study of diabetes mellitus. In Vivo (Athens, Greece), 23(2), 245–258. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19414410
  13. Chellappan, D. K., Sivam, N. S., Teoh, K. X., Leong, W. P., Fui, T. Z., Chooi, K., … Dua, K. (2018). Gene therapy and type 1 diabetes mellitus. Biomedicine & Pharmacotherapy, 108, 1188–1200. https://doi.org/10.1016/j.biopha.2018.09.138
  14. Cornell, S. (2015). Continual evolution of type 2 diabetes: an update on pathophysiology and emerging treatment options. Therapeutics and Clinical Risk Management, 11, 621–632. https://doi.org/10.2147/TCRM.S67387
  15. Cui, B., Han, L., Qu, J., & Lv, Y. (2009). Hypoglycemic activity of Grifola frondosa rich in vanadium. Biological Trace Element Research, 131(2), 186–191. https://doi.org/10.1007/s12011-009-8355-4
  16. Curós Abadal, A., & Flores, J. S. (2008). Relevancia de la hiperglucemia en el síndrome coronario agudo. Revista Espanola de Cardiologia, Vol. 61, pp. 447–450. https://doi.org/10.1157/13119986
  17. DeFronzo, R. A., Eldor, R., & Abdul-Ghani, M. (2013). Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care, 36 Suppl 2(Supplement 2), S127-38. https://doi.org/10.2337/dcS13-2011
  18. DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., … Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1(1), 15019. https://doi.org/10.1038/nrdp.2015.19
  19. Dong, S., Lau, H., Chavarria, C., Alexander, M., Cimler, A., Elliott, J. P., … Lakey, J. R. T. (2019). Effects of Periodic Intensive Insulin Therapy: An Updated Review. Current Therapeutic Research - Clinical and Experimental. https://doi.org/10.1016/j.curtheres.2019.04.003
  20. Eisenberg, M., Maker, A., Slezak, L., Nathan, J., Sritharan, K., Jena, B., … Andersen, D. (2005). Insulin Receptor (IR) and Glucose Transporter 2 (GLUT2) Proteins Form a Complex on the Rat Hepatocyte Membrane. Cellular Physiology and Biochemistry, 15(1–4), 051–058. https://doi.org/10.1159/000083638
  21. Elangovan, A., Subramanian, A., Durairaj, S., Ramachandran, J., Lakshmanan, D. K., Ravichandran, G., … Thilagar, S. (2019). Antidiabetic and hypolipidemic efficacy of skin and seed extracts of Momordica cymbalaria on alloxan induced diabetic model in rats. Journal of Ethnopharmacology, 241. https://doi.org/10.1016/j.jep.2019.111989
  22. Evan, A. P., Mong, S. A., Connors, B. A., Aronoff, G. R., & Luft, F. C. (1984). The effect of alloxan, and alloxan‐induced diabetes on the kidney. The Anatomical Record, 208(1), 33–47. https://doi.org/10.1002/ar.1092080105
  23. Han, N. ., Kirigia, J. ., Claude, J. ., Ogurstova, K. ., Guariguata, L. ., Rathmann, W. ., … Reja, A. (2017). Diabetes Atlas de la FID. In International Diabetes Federation. https://doi.org/10.1016/j.diabres.2017.09.002
  24. Huang, S., & Czech, M. P. (2007). The GLUT4 Glucose Transporter. Cell Metabolism, 5(4), 237–252. https://doi.org/10.1016/j.cmet.2007.03.006
  25. atsarou, A., Gudbjörnsdottir, S., Rawshani, A., Dabelea, D., Bonifacio, E., Anderson, B. J., … Lernmark, Å. (2017). Type 1 diabetes mellitus. Nature Reviews Disease Primers, 3(1), 17016. https://doi.org/10.1038/nrdp.2017.16
  26. Kharroubi, A. T., & Darwish, H. M. (2015). Diabetes mellitus: The epidemic of the century. World Journal of Diabetes, 6(6), 850–867. https://doi.org/10.4239/wjd.v6.i6.850
  27. Kim, H.-G. (2019). Cognitive dysfunctions in individuals with diabetes mellitus. Yeungnam University Journal of Medicine, 36(3), 183–191. https://doi.org/10.12701/yujm.2019.00255
  28. King, A., & Austin, A. (2017). Animal Models of Type 1 and Type 2 Diabetes Mellitus. Animal Models for the Study of Human Disease, 245–265. https://doi.org/10.1016/B978-0-12-809468-6.00010-3
  29. King, A. J. F. (2012). The use of animal models in diabetes research. British Journal of Pharmacology, 166(3), 877–894. https://doi.org/10.1111/j.1476-5381.2012.01911.x
  30. Korbecki, J., Baranowska-Bosiacka, I., Gutowska, I., & Chlubek, D. (2012). Biochemical and medical importance of vanadium compounds. Acta Biochimica Polonica, Vol. 59, pp. 195–200. https://doi.org/10.18388/abp.2012_2138
  31. Lee, T., Kuo, S., Yang, C., & Ou, H. (2019). Cost‐effectiveness of long‐acting insulin analogues versus intermediate/long‐acting human insulin for type 1 diabetes: a population‐based cohort following over 10 years. British Journal of Clinical Pharmacology, bcp.14188. https://doi.org/10.1111/bcp.14188
  32. Lee, Y. B., Lee, J. H., Park, E. S., Kim, G. Y., & Leem, C. H. (2014). Personalized metabolic profile estimations using oral glucose tolerance tests. Progress in Biophysics and Molecular Biology, 116(1), 25–32. https://doi.org/10.1016/j.pbiomolbio.2014.08.011
  33. Lenzen, S., Tiedge, M., & Panten, U. (1987). Glucokinase in pancreatic B-cells and its inhibition by alloxan. Acta Endocrinologica, 115(1), 21–29. https://doi.org/10.1530/acta.0.1150021
  34. Levina, A., & Lay, P. A. (2011). Metal-based anti-diabetic drugs: advances and challenges. Dalton Transactions, 40(44), 11675. https://doi.org/10.1039/c1dt10380f
  35. Liu, Y., Chen, D. D., Xing, Y. H., Ge, N., Zhang, Y., Liu, J., & Zou, W. (2014). A new oxovanadium complex enhances renal function by improving insulin signaling pathway in diabetic mice. Journal of Diabetes and Its Complications, 28(3), 265–272. https://doi.org/10.1016/j.jdiacomp.2014.02.001
  36. Martínez, T. G., Pauls, B. M., Cabrera, A. M. V., Granell, C. L., & Piqueres, R. F. (2017). Predictive factors of hyperglycemia in hospitalized adults receiving total parenteral nutrition. Farmacia Hospitalaria, 41(6), 667–673. https://doi.org/10.7399/fh.10784
  37. Mehdi, M. Z., Pandey, S. K., Théberge, J.-F., & Srivastava, A. K. (2006). Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochemistry and Biophysics, 44(1), 73–81. https://doi.org/10.1385/CBB:44:1:073
  38. Mehdi, M. Z., & Srivastava, A. K. (2005). Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: Mechanism of insulinomimesis. Archives of Biochemistry and Biophysics, 440(2), 158–164. https://doi.org/10.1016/j.abb.2005.06.008
  39. Mendivil Anaya, C. O., & Sierra Ariza, I. D. (2005). Insulin action and resistance: molecular aspects. Revista de La Facultad de Medicina, 53(4), 235–243.
  40. Michibata, H. (2012). Vanadium Biochemical and Molecular Biological Approaches. In The British Journal of Psychiatry (Vol. 111). https://doi.org/10.1192/bjp.111.479.1009-a
  41. Pandey, S. K., Anand-Srivastava, M. B., & Srivastava, A. K. (1998). Vanadyl sulfate-stimulated glycogen synthesis is associated with activation o phosphatidylinositol 3-kinase and is independent of insulin receptor tyrosine phosphorylation. Biochemistry, 37(19), 7006–7014. https://doi.org/10.1021/bi9726786
  42. Papargyri, P., Ojeda Rodríguez, S., Corrales Hernández, J. J., Mories Álvarez, M. T., Recio Córdova, J. M., Delgado Gómez, M., … Miralles García, J. M. (2014). Estudio observacional de infusión subcutánea continua de insulina a lo largo de 7 años en el tratamiento de la diabetes mellitus tipo 1. Endocrinologia y Nutricion, 61(3), 141–146. https://doi.org/10.1016/j.endonu.2013.09.003
  43. Pessoa, J. C. (2015). Thirty years through vanadium chemistry. Journal of Inorganic Biochemistry, 147, 4–24.
  44. Pessoa J.Costa, Crans Debbie C., & Kustin Kenneth. (2007). Vanadium: The Versatile Metal (Vol. 974). https://doi.org/10.1021/bk-2007-0974
  45. Pourghasem, M., Nasiri, E., & Shafi, H. (2014). Early renal histological changes in alloxan-induced diabetic rats. International Journal of Molecular and Cellular Medicine, 3(1), 11–15. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24551816
  46. Quirós, C., Jansà, M., Viñals, C., Giménez, M., Roca, D., Escarrabill, J., … Conget, I. (2019). Experiences and real life management of insulin pump therapy in adults with type 1 diabetes. Endocrinologia, Diabetes y Nutricion, 66(2), 117–123. https://doi.org/10.1016/j.endinu.2018.05.017
  47. Rask-Madsen, C., & Kahn, C. R. (2012). Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 2052–2059. https://doi.org/10.1161/ATVBAHA.111.241919
  48. Rees, D. A., & Alcolado, J. C. (2005). Animal models of diabetes mellitus. Diabetic Medicine, 22(4), 359–370. https://doi.org/10.1111/j.1464-5491.2005.01499.x
  49. Rehder, D. (2008). Bioinorganic vanadium chemistry. In Bioinorganic Vanadium Chemistry. https://doi.org/10.1002/9780470994429
  50. Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799–806. https://doi.org/10.1038/414799a
  51. Samira, M., Mounira, T., Kamel, K., Yacoubi, M. T., Ben Rhouma, K., Sakly, M., & Tebourbi, O. (2018). Hepatotoxicity of vanadyl sulfate in nondiabetic and streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 96(11), 1076–1083. https://doi.org/10.1139/cjpp-2018-0255
  52. Schofield, J., Ho, J., & Soran, H. (2019). Cardiovascular Risk in Type 1 Diabetes Mellitus. Diabetes Therapy, 10(3), 773–789. https://doi.org/10.1007/s13300-019-0612-8
  53. Shah, S. Zu. H. (2016). Effects of oral vanadium on glycaemic and lipid profile in rats. Retrieved from https://jpma.org.pk/article-details/8009?article_id=8009&fbclid=IwAR0GiewzHSv-RDtRLpUD1Fr1UYGRGnBA7BGwcn4FQs-HWv68goegQUBIPu4
  54. Shalimova, A., Graff, B., Gąsecki, D., Wolf, J., Sabisz, A., Szurowska, E., … Narkiewicz, K. (2019). Cognitive Dysfunction in Type 1 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 104(6), 2239–2249. https://doi.org/10.1210/jc.2018-01315
  55. Sherwani, S. I., Khan, H. A., Ekhzaimy, A., Masood, A., & Sakharkar, M. K. (2016, July 3). Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomarker Insights, Vol. 11, pp. 95–104. https://doi.org/10.4137/Bmi.s38440
  56. Shulman, R. M., & Daneman, D. (2010). Type 1 diabetes mellitus in childhood. Medicine, 38(12), 679–685. https://doi.org/10.1016/J.MPMED.2010.09.001
  57. Sibiya, S., Msibi, B., Khathi, A., Sibiya, N., Booysen, I., & Ngubane, P. (2019). The effect dioxidovanadium complex (v) on hepatic function in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology. https://doi.org/10.1139/cjpp-2019-0369
  58. Sidorova, Y. S., Skalnaya, M. G., Tinkov, A. A., & Mazo, V. K. (2019). The effect of vanadium compounds on carbohydrate and lipid metabolism disorders. Problems of Endocrinology, 65(3), 184–190. https://doi.org/10.14341/probl10093
  59. Srivastava, A. K., & Mehdi, M. Z. (2005). Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabetic Medicine, 22(1), 2–13. https://doi.org/10.1111/j.1464-5491.2004.01381.x
  60. Szkudelski, T. (2001). The Mechanism of Alloxan and Streptozotocin Action in B Cells of the Rat Pancreas. Retrieved from http://www.biomed.cas.cz/physiolres/s.htmPhysiol.Res.50:536-546,2001
  61. Thompson, K. H., Lichter, J., LeBel, C., Scaife, M. C., McNeill, J. H., & Orvig, C. (2009). Vanadium treatment of type 2 diabetes: A view to the future. Journal of Inorganic Biochemistry, 103(4), 554–558. https://doi.org/10.1016/j.jinorgbio.2008.12.003
  62. Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232. https://doi.org/10.1007/s00125-014-3451-1
  63. Titchenell, P. M., Quinn, W. J., Lu, M., Chu, Q., Lu, W., Li, C., … Birnbaum, M. J. (2016). Direct Hepatocyte Insulin Signaling Is Required for Lipogenesis but Is Dispensable for the Suppression of Glucose Production. Cell Metabolism, 23(6), 1154–1166. https://doi.org/10.1016/j.cmet.2016.04.022
  64. Treviño, S., Díaz, A., Sánchez-Lara, E., Sanchez-Gaytan, B. L., Perez-Aguilar, J. M., & González-Vergara, E. (2018). Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biological Trace Element Research, 188(1), 68–98. https://doi.org/10.1007/s12011-018-1540-6
  65. Treviño, S., Velázquez-Vázquez, D., Sánchez-Lara, E., Diaz-Fonseca, A., Flores-Hernandez, J. Á., Pérez-Benítez, A., … González-Vergara, E. (2016). Metforminium Decavanadate as a Potential Metallopharmaceutical Drug for the Treatment of Diabetes Mellitus. Oxidative Medicine and Cellular Longevity, 2016, 1–14. https://doi.org/10.1155/2016/6058705
  66. Wang, H. Y., Ducommun, S., Quan, C., Xie, B., Li, M., Wasserman, D. H., … Chen, S. (2013). AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochemical Journal, 449(2), 479–489. https://doi.org/10.1042/BJ20120702
  67. Wilcox, G. (2005). Insulin and insulin resistance. The Clinical Biochemist. Reviews, 26(2), 19–39. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16278749
  68. Wilk, A., Szypulska-Koziarska, D., & Wiszniewska, B. (2017). The toxicity of vanadium on gastrointestinal, urinary and reproductive system, and its influence on fertility and fetuses malformations. Postepy Higieny i Medycyny Doswiadczalnej (Online), 71, 850–859. https://doi.org/10.5604/01.3001.0010.4783
  69. Willsky, G., Takeuchi, E., & Tracey, A. (2010). Vanadium in Biological Systems. In Vanadium. https://doi.org/10.1201/9781420046144.ch10
  70. Xie, M., Chen, D., Zhang, F., Willsky, G. R., Crans, D. C., & Ding, W. (2014). Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. Journal of Inorganic Biochemistry, 136, 47–56. https://doi.org/10.1016/j.jinorgbio.2014.03.011
  71. Zheng, C. M., Ma, W. Y., Wu, C. C., & Lu, K. C. (2012, October 9). Glycated albumin in diabetic patients with chronic kidney disease. Clinica Chimica Acta, Vol. 413, pp. 1555–1561. https://doi.org/10.1016/j.cca.2012.04.025

Artículos más leídos del mismo autor/a