Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Vol. 6 Núm. 18 (2020): Aditivos Alimentarios | Comida Chatarra y Salud

Soya transgénica: peligros potenciales y realidades

Enviado
octubre 26, 2020
Publicado
septiembre 15, 2020

Resumen

El uso de Organismos Genéticamente Modificados (OGM) se ha incrementado desde 1997 con el propósito de reducir los costos en el uso de herbicidas sin tomar en cuenta los riesgos que su manejo implica como el equilibrio en los ecosistemas y modificación de las comunidades en la rizosfera. Estados Unidos es el país número 1 en la producción de soya genéticamente modificada y se ha estudiado su tolerancia a herbicidas a la par del impacto que provocan sus cultivos, con esto, se han logrado identificar riesgos potenciales como la transferencia horizontal de genes y la reducción en la fertilidad del suelo. El cultivo de soya representa un porcentaje importante en el campo agrícola y es por lo mismo que se requieren de estudios exhaustivos para asegurar que su consumo sea seguro.

Citas

  1. Acosta, O. (2002). Riesgos y preocupaciones sobre los alimentos transgénicos y la salud humana. Revista colombiana de Biotecnología, 4 (2), 5-16.
  2. Agostini, M. G., Roesler, I., Bonetto, C., Ronco, A. E., & Bilenca, D. (2020). Pesticides in the real world: The consequences of GMO-based intensive agriculture on nature amphibians. Biological Conservation, 241.
  3. Arango, L., Buddrus-Schiemann, K., Opelt, K., Lueders, T., Haesler , F., Schmid, M., & Hartmann, A. (2014). Effects of glyphosate on the bacterial community associated with roots of transgenic Roundup Ready® soybean. European journal of soil biology, 63, 41-48.
  4. Bárcena, A., Katz, J., Morales, C., & Schaper, M. (2004). Los transgénicos en América Latina y el Caribe: un debate abierto. Santiago, Chile: Naciones Unidas, 33-69.
  5. Boerema, A., Peeters, A., Swolfs, S., Vandevenne, F., Jacobs, S., Staes, J., & Meire, P. (2016). Soybean trade: balancing environmental and socio-economic impacts of an intercontinental market. PloS one, 11 (5).
  6. Bolivar Zapata, F. G. (2018). Transgénicos: grandes beneficios, ausencia de daños y mitos. Comité de Biotecnología: Academia Mexicana de ciencias.
  7. Caballero-Mellado, J., Onofre-Lemus, J., Estrada-De Los Santos, P., & Martínez-Aguilar, L. (2007). The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol., 73(16), 5308-5319.
  8. Casonatto, M., Arantes, S., Rieger, E., & Andrade, E. (2014). How glyphosate may affect transgenic soybean in different soil and phosphorus levels. Planta Daninha, 843-850.
  9. Cierpisz, M., Twardoski, J., Gruss, I., & Kozak, M. (2019). Different soybean plant arrangements affect ground beetle assemblages. Journal of Plant Protection Research, 441-450.
  10. Compass, G. (2016). GMO database. Obtenido de http://www.gmo-compass.org/eng/gmo/db/
  11. Conabio. (2012). Análisis de riesgo Sol 007/2012. Ciudad de México: Dirección Técnica de Análisis y Prioridades, Coordinación de Análisis de Riesgo y Bioseguridad, Conabio.
  12. Domingo, J. L., & Bordonaba, J. G. (2011). A literature review on the safety assessment of genetically modified plants. Environment International, 37 (4), 734-742.
  13. Dunfield, K. E., & Germida, J. J. (2004). Impact of genetically modified crops on soil and plant-associated microbial communities. Journal of environmental quality, 33(3), 806-815.
  14. Eriksson, M., Ghosh, R., Hansson, E., Basnet , S., & Lagerkvist, C. J. (2018). Environmental consequences of introducing genetically modified soy feed in Sweden. Journal of Cleaner Production, 176, 46-53.
  15. Fernandes, T. R., Costa, J., Placido, A., Villa, C., Grazina, L., Meira , L., & et. al. (2016). GMO analysis as affected by DNA degradation. In R. R. Watson, & V. R. Preedy (Eds.). Genetically modified organisms in foods, 111-118.
  16. García, L. &. (2011). Genes y Evolución el delgado hilo que nos conecta por miles de millones de años. Acta Colombiana, 16, 71-87.
  17. Grazina, L., Plácido, A., Costa, J., Fernandes, T. J., Oliveira, M. B., & Mafra, I. (2017). Tracing two Roundup Ready™ soybean lines (GTS 40-3-2 and MON89788) in foods commercialised in Portugal. Food Control, 73, 1053-1060.
  18. Hudson, L. C., Lambirth, K. C., Bost, K. L., & Piller, K. J. (2013). Advancements in transgenic soy: from field to bedside. A comprehensive survey of international soybean research-genetics, physiology, agronomy and nitrogen relationships. InTech, 447-474.
  19. International Service for the Adquisition of Agro-Biotech Applications ISAAA. (2019). Obtenido de https://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=174
  20. James, C. (2015). 20th Anniversary of the global commercialization of biotech crops (1996 to 2015) and biotech crop highlights in 2015. ISAAA Brief(51).
  21. Kim, K. H., Kabir, E., & Jahan , S. A. (2017). Exposure to pesticides and the associated human health effects. Science of the Total Environment, 525-535.
  22. Liang , J., Jiao, Y., Luan, Y., Sun, S., Wu, C., Wu, H., & Zhang, Z. (2018). A 2-year field trial reveals no significant effects of GM high-methionine soybean on the rhizosphere bacterial communities. World Journal of Microbiology and Biotechnology, 34 (8), 113.
  23. Lourdes Torres, M., Mejía, L., & Arahana, V. S. (2013). Estandarización de un protocolo para detección de OGMs: evaluación de la presencia de OGMs en granos de soya colectados en diferentes centros de acopio de Ecuador. ACI Avances en Ciencias e Ingenierías, 5 (1).
  24. Luan, H., Liao, W., Song, Y., & al., e. (2020). Transgenic plant generated by RNAi-mediated knocking down of soybean Vma12 and soybean mosaic virus resistance evaluation. AMB Expr(10).
  25. Marques , L. H., Santos , A. C., Castro, B. A., Storer, N. P., Babcock, J., Lepping, M., & Fernandes, O. A. (2018). Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil. PloS one, 13 (2).
  26. Monsanto. (2001). Evaluación de la seguridad de la soja Roundup Ready®️, evento 40-3-2: Evaluación de efectos en organismos no objetivo. Obtenido de https://www.monsantoglobal.com/global/py/productos/Documents/soja.pdf
  27. Oviedo-Bolaños, K., García-González, J., Solano-González, S., Martínez-Debat, C., Sancho-Blanco, C., & Umaña-Castro, R. (2020). Detección del promotor 35S mediante PCR tiempo-real: indicador de transgenicidad en alimentos y Gossypium sp. Agronomía Mesoamericana, 209-221.
  28. Sandoval, D. (2017). Treinta años de transgénicos en México (compendio cartográfico).
  29. Tamariz, G. (2013). GM crops vs. Apiculture. An ecological distribution conflict in the Mayan region of Mexico. Doctoral dissertation, Tesis Master. Institut de Ciencia i Tecnologia Ambientals, ICTA, Autonomous University of Barcelona.
  30. Zhu, Q., Riley, W. J., Tang, J., & Koven, C. D. (2016). Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests. Biogeosciences, 13 (1), 341-363.