Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Año 6 No. 17 Mayo - Agosto 2020

Biobutanol como combustible alternativo: un panorama actual del potencial de thermoanaerobacterium thermosaccharolyticum

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2020.17.220
Enviado
octubre 1, 2020
Publicado
mayo 15, 2020

Resumen

La quema de combustibles fósiles ha provocado varios conflictos en todo el mundo que han repercutido en el calentamiento global. Existe una alternativa que sustituye el uso de estas fuentes: los biocombustibles. El biobutanol se ha convertido en un punto de referencia para la industria biotecnológica por sus ventajas frente a otros biocombustibles. Sin embargo, existen ciertas limitaciones en su producción como son: la composición de la materia prima, los tratamientos costosos y la complejidad de las vías metabólicas. En este artículo exponemos una visión general sobre el potencial actual de Thermoanaerobacterium thermosaccharolyticum TG57 como microorganismo con una eficiente capacidad de producción de biobutanol.

Citas

  1. Arora, R., Behera, S., & Kumar, S. (2015). Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective. Renewable and Sustainable Energy Reviews, 51, 699–717. https://doi.org/10.1016/j.rser.2015.06.050
  2. Bhandiwad, A., Guseva, A., & Lynd, L. (2013). Metabolic Engineering of Thermoanaerobacterium thermosaccharolyticum for Increased n-Butanol Production. Advances in Microbiology, 03(01), 46–51. https://doi.org/10.4236/aim.2013.31007
  3. Bhatia, S. K., Kim, S.-H., Yoon, J.-J., & Yang, Y.-H. (2017). Current status and strategies for second generation biofuel production using microbial systems. Energy Conversion and Management, 148(3), 1142–1156. https://doi.org/10.1016/j.enconman.2017.06.073
  4. Bhatia, S. K., & Yang, Y. H. (2017). Microbial production of volatile fatty acids: current status and future perspectives. Reviews in Environmental Science and Biotechnology, 16(2), 327–345. https://doi.org/10.1007/s11157-017-9431-4
  5. Correa, D. F., Beyer, H. L., Fargione, J. E., Hill, J. D., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2019). Towards the implementation of sustainable biofuel production systems. Renewable and Sustainable Energy Reviews, 107(May 2018), 250–263. https://doi.org/10.1016/j.rser.2019.03.005
  6. García, V., Päkkilä, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: How to improve the efficiency? Renewable and Sustainable Energy Reviews, 15(2), 964–980. https://doi.org/10.1016/j.rser.2010.11.008
  7. Goyal, L., & Khanna, S. (2019). Recent Advances in Microbial Production of Butanol as a Biofuel. International Journal of Applied Sciences and Biotechnology, 7(2), 130–152. https://doi.org/10.3126/ijasbt.v7i2.24630
  8. Gronenberg, L. S., Marcheschi, R. J., & Liao, J. C. (2013). Next generation biofuel engineering in prokaryotes. Current Opinion in Chemical Biology, 17(3), 462–471. https://doi.org/10.1016/j.cbpa.2013.03.037
  9. Hon, S., Olson, D. G., Holwerda, E. K., Lanahan, A. A., Murphy, S. J. L., Maloney, M. I., … Lynd, L. R. (2017). The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Metabolic Engineering, 42, 175–184. https://doi.org/10.1016/j.ymben.2017.06.011
  10. Huzir, N. M., Aziz, M. M. A., Ismail, S. B., Abdullah, B., Mahmood, N. A. N., Umor, N. A., & Syed Muhammad, S. A. F. (2018). Agro-industrial waste to biobutanol production: Eco-friendly biofuels for next generation. Renewable and Sustainable Energy Reviews, 94, 476–485. https://doi.org/10.1016/j.rser.2018.06.036
  11. Ibrahim, M. F., Kim, S. W., & Abd-Aziz, S. (2018). Advanced bioprocessing strategies for biobutanol production from biomass. Renewable and Sustainable Energy Reviews, 91, 1192–1204. https://doi.org/10.1016/j.rser.2018.04.060
  12. Jiang, Y., Lv, Y., Wu, R., Sui, Y., Chen, C., Xin, F., … Jiang, M. (2019). Current status and perspectives on biobutanol production using lignocellulosic feedstocks. Bioresource Technology Reports, 7(March), 100245. https://doi.org/10.1016/j.biteb.2019.100245
  13. Jiang, Y., Xin, F., Lu, J., Dong, W., Zhang, W., Zhang, M., … Jiang, M. (2017). State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresource Technology, 245, 1498–1506. https://doi.org/10.1016/j.biortech.2017.05.142
  14. Kumar, M., & Gayen, K. (2011). Developments in biobutanol production: New insights. Applied Energy, 88(6), 1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055
  15. Li, T., Zhang, C., Yang, K.-L., & He, J. (2018). Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol. Science Advances, 4(3), e1701475. https://doi.org/10.1126/sciadv.1701475
  16. Natalense, J., & Zouain, D. (2013). Technology roadmapping for renewable fuels: Case of biobutanol in Brazil. Journal of Technology Management and Innovation, 8(4), 143–152. https://doi.org/10.4067/s0718-27242013000500012
  17. No, S.-Y. (2016). Application of biobutanol in advanced CI engines – A review. Fuel, 183, 641–658. https://doi.org/10.1016/j.fuel.2016.06.121
  18. Procentese, A., Raganati, F., Olivieri, G., Russo, M. E., de la Feld, M., & Marzocchella, A. (2017). Renewable feedstocks for biobutanol production by fermentation. New Biotechnology, 39, 135–140. https://doi.org/10.1016/j.nbt.2016.10.010
  19. Pugazhendhi, A., Mathimani, T., Varjani, S., Rene, E. R., Kumar, G., Kim, S.-H., … Yoon, J.-J. (2019). Biobutanol as a promising liquid fuel for the future - recent updates and perspectives. Fuel, 253, 637–646. https://doi.org/10.1016/j.fuel.2019.04.139
  20. Raganati, F., Procentese, A., Olivieri, G., Salatino, P., & Marzocchella, A. (2014). Biobutanol production from hexose and pentose sugars. Chemical Engineering Transactions, 38, 193–198. https://doi.org/10.3303/CET1438033
  21. Ranjan, A., & Moholkar, V. S. (2012). Biobutanol: science, engineering, and economics. International Journal of Energy Research, 36(3), 277–323. https://doi.org/10.1002/er.1948
  22. Rathour, R. K., Ahuja, V., Bhatia, R. K., & Bhatt, A. K. (2018). Biobutanol: New era of biofuels. International Journal of Energy Research, 42(15), 4532–4545. https://doi.org/10.1002/er.4180
  23. Selbmann, K. (2015). Bio-, Agro- or even Social Fuels: Discourse Dynamics on Biofuels in Germany. Environmental Values, 24(4), 483–510. https://doi.org/10.3197/096327115X14345368709943
  24. Visioli, L. J., Alves, E. A., Trindade, A., Kuhn, R. C., Schwaab, M., & Mazutti, M. A. (2015). Evaluation of biobutanol production by Clostridium beijerinckii NRRL B-592 using sweet sorghum as carbon source. Ciência Rural, 45(9), 1707–1712. https://doi.org/10.1590/0103-8478cr20140520
  25. Wei, N., Quarterman, J., Kim, S. R., Cate, J. H. D., & Jin, Y.-S. (2013). Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nature Communications, 4(1), 2580. https://doi.org/10.1038/ncomms3580
  26. Wilches, Á. (2011). Biocombustibles: ¿Son realmente amigables con el ambiente? Revista Colombiana de Bioética, 6, 89–102. Retrieved from http://www.redalyc.org/articulo.oa?id=189219032007
  27. Xin, F., Dong, W., Zhang, W., Ma, J., & Jiang, M. (2019). Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing. Trends in Biotechnology, 37(2), 167–180. https://doi.org/10.1016/j.tibtech.2018.08.007