Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Año 10 No. 28 Enero - Abril 2024

UTILIZACIÓN DE MORINGA OLEÍFERA COMO UN COAGULANTE-FLOCULANTE NATURAL PARA LA DESCONTAMINACIÓN DE AGUA

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2024.10.28.1279
Enviado
febrero 5, 2024
Publicado
enero 7, 2024

Resumen

La contaminación del agua hoy en día es un problema global, por tal motivo es de suma importancia la investigación y la innovación en diferentes técnicas para el saneamiento de este vital líquido. Las semillas de Moringa oleífera han sido objeto de estudio desde hace años, debido la facilidad que tienen para la remoción y clarificación de diversos contaminantes en agua, además de tener un efecto antimicrobiano, lo cual le confiere una propiedad interesante a la hora de emplearla dentro del tratamiento de aguas residuales. Esta revisión presenta una descripción general del uso de la Moringa oleífera como un material adsorbente natural para ser implementado en el proceso de coagulación-floculación para el tratamiento de agua contaminada.

Citas

Abu-Danso, E., Peräniemi, S., Leiviskä, T., & Bhatnagar, A. (2018). Synthesis of S-ligand tethered cellulose nanofibers for efficient removal of Pb(II) and Cd(II) ions from synthetic and industrial wastewater. Environmental Pollution, 242, 1988–1997. https://doi.org/10.1016/j.envpol.2018.07.044

Azad, Md. S., & Hassan, M. S. (2020). Importance of Moringa Oleifera for Wastewater Treatment: A Review. International Journal of Sustainable Energy Development, 8(1), 415–420. https://doi.org/10.20533/ijsed.2046.3707.2020.0049

Benítez, W. M. (2012). APROVECHAMIENTO POSCOSECHA DE LA MORINGA (Moringa oleífera). Revista Iberoamericana de Tecnología Postcosecha, 13(2), 171–174.

Bhatia, S., Othman, Z., & Ahmad, A. L. (2007). Coagulation–flocculation process for POME treatment using Moringa oleifera seeds extract: Optimization studies. Chemical Engineering Journal, 133, 205–212. https://doi.org/10.1016/j.cej.2007.01.034

Camacho, F. P., Sousa, V. S., Bergamasco, R., & Ribau Teixeira, M. (2017). The use of Moringa oleifera as a natural coagulant in surface water treatment. Chemical Engineering Journal, 313, 226–237. https://doi.org/10.1016/j.cej.2016.12.031

Chen, H., & Zhao, J. (2009). Adsorption study for removal of Congo red anionic dye using organo-attapulgite. Adsorption, 15(4), 381–389. https://doi.org/10.1007/s10450-009-9155-z

Cheng, N., Wang, B., Wu, P., Lee, X., Xing, Y., Chen, M., & Gao, B. (2021). Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environmental
Pollution, 273, 116448. https://doi.org/10.1016/j.envpol.2021.116448

Denchak, Melissa., (2023). Water Pollution: Everything You Need to Know. [Figura] Recuperado de https://www.nrdc.org/stories/water-pollution-everything-you-need-know#whatis

Hegazy, I., Ali, M. E. A., Zaghlool, E. H., & Elsheikh, R. (2021). Heavy metals adsorption from contaminated water using moringa seeds/ olive pomace byproducts. Applied Water Science, 11(6), 95. https://doi.org/10.1007/s13201-021-01421-5

Jagaba, A. H., Kutty, S. R. M., Hayder, G., Baloo, L., Ghaleb, A. A. S., Lawal, I. M., Abubakar, S., Al-dhawi, B. N. S., Almahbashi, N. M. Y., & Umaru, I. (2021). Degradation of Cd, Cu, Fe, Mn, Pb and Zn by Moringa-oleifera, zeolite, ferric-chloride, chitosan and alum in an industrial effluent. Ain Shams Engineering Journal, 12(1), 57–64. https://doi.org/10.1016/j.asej.2020.06.016

Jing, G., Wang, L., Yu, H., Amer, W. A., & Zhang, L. (2013). Recent progress on study of hybrid hydrogels for water treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 416, 86–94. https://doi.org/10.1016/j.colsurfa.2012.09.043

Kansal, S. K., & Kumari, A. (2014). Potential of M. oleifera for the treatment of water and wastewater. Chemical Reviews, 114(9), 4993–5010. https://doi.org/10.1021/cr400093w

Kwabena Ntibrey, R. A., Kuranchie, F. A., & Gyasi, S. F. (2020). Antimicrobial and coagulation potential of Moringa oleifera seed powder coupled with sand filtration for treatment of bath wastewater from public senior high schools in Ghana. Heliyon, 6(8), e04627. https://doi.org/10.1016/j.heliyon.2020.e04627

Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J.-M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39(1), 75–90. https://doi.org/10.1016/S0926-3373(02)00078-4

Malaviya, P., & Singh, A. (2011). Physicochemical Technologies for Remediation of Chromium-Containing Waters and Wastewaters. Critical Reviews in Environmental Science and Technology, 41(12), 1111–1172. https://doi.org/10.1080/10643380903392817

Masumoto, T., Amano, H., Otani, S., Kamijima, M., Yamazaki, S., Kobayashi, Y., & Kurozawa, Y. (2022). Association between prenatal cadmium exposure and child development: The Japan Environment and Children’s study. International Journal of Hygiene and Environmental Health, 243, 113989. https://doi.org/10.1016/j.ijheh.2022.113989

Mataka, L. M., Henry, E. M. T., Masamba, W. R. L., & Sajidu, S. M. (2006). Lead remediation of contaminated water using Moringa Stenopetala and Moringa oleifera seed powder. International Journal of Environmental Science & Technology, 3(2), 131–139. https://doi.org/10.1007/BF03325916

Mateus, G. A. P., Paludo, M. P., dos Santos, T. R. T., Silva, M. F., Nishi, L., Fagundes-Klen, M. R., Gomes, R. G., & Bergamasco, R. (2018). Obtaining drinking water using a magnetic coagulant composed of magnetite nanoparticles functionalized with Moringa oleifera seed extract. Journal of Environmental Chemical Engineering, 6(4), 4084–4092. https://doi.org/10.1016/j.jece.2018.05.050

Mendoza, I., Fernández, N., Ettiene, G., & Díaz, A. (2000). Uso de la Moringa Oleifera como Coagulante en la Potabilización de las Aguas. Ciencia, 8(2), Article 2. https://produccioncientificaluz.org/index.php/ciencia/article/view/9050

Mishra, B., Kumar, P., Saraswat, C., Chakraborty, S., & Gautam, A. (2021). Water Security in a Changing Environment: Concept, Challenges and Solutions. Water, 13(4), 490. https://doi.org/10.3390/w13040490

Ndabigengesere, A., & Subba Narasiah, K. (1998). Quality of water treated by coagulation using Moringa oleifera seeds. Water Research, 32(3), 781–791. https://doi.org/10.1016/S0043-1354(97)00295-9

Okpara, E. C., Olatunde, O. C., Wojuola, O. B., & Onwudiwe, D. C. (2023). Applications of Transition Metal Oxides and Chalcogenides and their Composites in Water Treatment: A review. Environmental Advances, 11, 100341. https://doi.org/10.1016/j.envadv.2023.100341

Pal, P., & Banat, F. (2015). Removal of Contaminants from Industrial Lean Amine Solvent Using Polyacrylamide Hydrogels Optimized by Response Surface Methodology. Adsorption Science & Technology, 33(1), 9–24. https://doi.org/10.1260/0263-6174.33.1.9

Pang, X., Sellaoui, L., Franco, D., Netto, M. S., Georgin, J., Luiz Dotto, G., Abu Shayeb, M. K., Belmabrouk, H., Bonilla-Petriciolet, Adrian., & Li, Z. (2020). Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions. Chemical Engineering Journal, 391, 123617. https://doi.org/10.1016/j.cej.2019.123617

Rahmatpour, A., Soleimani, P., & Mirkani, A. (2022). Eco-friendly poly(vinyl alcohol)/partially hydrolyzed polyacrylamide/graphene oxide semi-IPN nanocomposite hydrogel as a reusable and efficient adsorbent of cationic dye methylene blue from water. Reactive and Functional Polymers, 175, 105290. https://doi.org/10.1016/j.reactfunctpolym.2022.105290

Ramirez, A., Benítez, J. L., Rojas de Astudillo, L., & Rojas de Gáscue, B. (2016). Materiales polimeros de tipo hidrogeles: Revisión sobre su caracterización mediante ftir, dsc, meb y met. Revista Latinoamericana de Metalurgia y Materiales, 36(2), 108–130.

Soliman, N. khamis, Moustafa, A. F., Aboud, A. A., & Halim, K. S. A. (2019). Effective utilization of Moringa seeds waste as a new green environmental adsorbent for removal of industrial toxic dyes. Journal of Materials Research and Technology, 8(2), 1798–1808. https://doi.org/10.1016/j.jmrt.2018.12.010

Tie, J., Jiang, M., Li, H., Zhang, S., & Zhang, X. (2015). A comparison between Moringa oleifera seed presscake extract and polyaluminum chloride in the removal of direct black 19 from synthetic wastewater. Industrial Crops and Products, 74, 530–534. https://doi.org/10.1016/j.indcrop.2015.04.004

van der Berg, jorrita, & Kuipers, S. (2022). The antibacterial action of Moringa oleifera: A systematic review. South African Journal of Botany, 151, 224–233. https://doi.org/10.1016/j.sajb.2022.09.034

Vasu, V., & Joshua, R. (2013). Characteristics of stored rain water and its treatment technology using Moringa Seeds. Intl. Jl. of Life Sciences Biotech. and Pharma Research, 2, 155.
Villaseñor, D., Astudillo-Sanchez, P., Real, J., & Bandala, E. (2018). Wastewater treatment using Moringa oleifera Lam seeds: A review. Journal of Water Process Engineering, 23, 151–164. https://doi.org/10.1016/j.jwpe.2018.03.017

Vivas Saltos, H. T., Calderón Pincay, J. M., Mendoza Cedeño, L. G., & Cedeño Zambrano, J. G. (2022). Remoción de contaminantes en aguas residuales mediante el polielectrolito catiónico extraído de las semillas de Moringa oleífera. Ingeniería Hidráulica y Ambiental, 43(2), 84–96.

Vunain, E., Masoamphambe, E. F., Mpeketula, P. M. G., Monjerezi, M., & Etale, A. (2019). Evaluation of coagulating efficiency and water borne pathogens reduction capacity of Moringa oleifera seed powder for treatment of domestic wastewater from Zomba, Malawi. Journal of Environmental Chemical Engineering, 7(3), 103118. https://doi.org/10.1016/j.jece.2019.103118

Water witness. (2021). How Fair is Fashion's Water Footprint?. [Figura] Recuperado de https://waterwitness.org/news-events/2021/7/12/how-fair-is-fashions-water-footprint

Zhang, L., Li, X., Chen, S., Guana, J., Guoa, Y., & Yub, W. (2023). 3D chitosan/GO/ZnO hydrogel with enhanced photocorrosion-resistance and adsorption for efficient removal of typical water-soluble pollutants. Catalysis Communications, 176, 106627. https://doi.org/10.1016/j.catcom.2023.106627