Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Año 9 No.25 Enero - Abril 2023

Superbacterias: Sin escape hacia el futuro

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2023.25.1050
Enviado
febrero 14, 2023
Publicado
marzo 2, 2023

Resumen

Las infecciones intrahospitalarias ahora conocidas como Infecciones Asociadas a la Atención de la Salud (IAAS) han sido causadas por diferentes microorganismos durante la historia de la salud humana, actualmente los agentes causales de IAAS que cobran mayor atención, son las bacterias del grupo ESKAPE (nombre reconocido a nivel internacional y conformado por la primera letra de cada patógeno: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonae, Acinetobacter baumannii, Pseudomonas aeruginosa y Enterobacter sp) debido a que son resistentes a uno o varios antibióticos se les conoce como superbacterias. La resistencia antimicrobiana es uno de los principales problemas que afecta a la humanidad en pleno siglo XXI y los tratamientos cada vez se vuelven obsoletos ante estas superbacterias. Ante esta situación, la salud pública a nivel mundial corre un riesgo potencial en el futuro, por adquirir infecciones difíciles de curar, por lo que, incrementarían las tasas de morbilidad y mortalidad, así como los costos por atención médica.

 

 

Citas

Alós, J. I. (2015). Antibiotic resistance: A global crisis. In Enfermedades Infecciosas y Microbiologia Clinica (Vol. 33, Issue 10, pp. 692–699). Elsevier Doyma. https://doi.org/10.1016/j.eimc.2014.10.004

Antunes, L. C. S., Visca, P., & Towner, K. J. (2014). Acinetobacter baumannii: Evolution of a global pathogen. Pathogens and Disease, 71(3), 292–301. https://doi.org/10.1111/2049-632X.12125

Arzanlou, M., Chai, W. C., & Venter, H. (2017). Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays in Biochemistry, 61(1), 49–59. https://doi.org/10.1042/EBC20160063

Bereket W, Hemalatha K, Getenet B, Wondwossen T, Solomon A, Zeynudin, A., & Kannan S. (2012). Update on bacterial nosocomial infections. European Review for Medical and Pharmacological Sciences, 16(8), 1039–1044. https://www.researchgate.net/profile/Kannan-Subbaram-2/publication/332547513_Update_on_bacterial_nosocomial_infections/links/6214a3aa08bee946f395b0bb/Update-on-bacterial-nosocomial-infections.pdf

Cook GC, & Webb AJ. (2002). Reactions from the medical and nursing professions to Nightingale’s “reform(s)” of nurse training in the late 19th century. Postgraduate Medical Journal, 78(916), 118–123. https://doi.org/10.1136/pmj.78.916.118

Davies, J., & Davies, D. (2010). Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews, 74(3), 417–433. https://doi.org/10.1128/MMBR.00016-10

Davin-Regli, A., & Pagès, J. M. (2015). Enterobacter aerogenes and Enterobacter cloacae; Versatile bacterial pathogens confronting antibiotic treatment. In Frontiers in Microbiology (Vol. 6, Issue MAY). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2015.00392

de Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/https://doi.org/10.1128/CMR.00181-19

Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, Lamm W, Clark C, MacFarquhar J, Walton AL, Reller LB, & Sexton DJ. (2002). Health Care–Associated Bloodstream Infections in Adults: A Reason To Change the Accepted Definition of Community-Acquired Infections. Annals of Internal Medicine, 137(10), 791–797. https://doi.org/10.7326/0003-4819-137-10-200211190-00007

Gellatly, S. L., & Hancock, R. E. W. (2013). Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathogens and Disease, 67(3), 159–173. https://doi.org/10.1111/2049-632X.12033

Giammanco A, Calà C, Fasciana T, & Dowzicky M J. (2017). Global Assessment of the Activity of Tigecycline against Multidrug-Resistant Gram-Negative Pathogens between 2004 and 2014 as Part of the Tigecycline Evaluation and Surveillance Trial. MSphere, 2(1). https://doi.org/10.1128/msphere.00310-16

Haley R W., Culver D H., White J W., Morgan W M, Emori T G, Munn V P, & Hooton T M. (1985). The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. American Journal of Epidemiology, 121(2), 182–205. https://doi.org/10.1093/oxfordjournals.aje.a113990

Haney-Carr J. (n.d.). Entercoccus. PHL of CDC. Retrieved August 6, 2022, from https://phil.cdc.gov/default.aspx
Haney-Carr J, & Arduino M J. (n.d.). Staphylococcus aureus. DRPH, USCDCP. Retrieved August 6, 2022, from https://pixnio.com/es/ciencia/imagenes-microscopia/staphylococcus-aureus-es/staphylococcus-aureus-bacterias#img_info

Hauck, C., Cober, E., Richter, S. S., Perez, F., Salata, R. A., Kalayjian, R. C., Watkins, R. R., Scalera, N. M., Doi, Y., Kaye, K. S., Evans, S., Fowler, V. G., Bonomo, R. A., & van Duin, D. (2016). Spectrum of excess mortality due to carbapenem-resistant Klebsiella pneumoniae infections. Clinical Microbiology and Infection, 22(6), 513–519. https://doi.org/10.1016/j.cmi.2016.01.023

Instituto de Investigación Sanitaria Valdecilla. (2020, May 5). PSEUDOMONAS AERUGINOSA. ANÁLISIS DE LA VIRULENCIA DE PSEUDOMONAS AERUGINOSA. https://www.idival.org/es/NOTICIAS/ID/2320/Analisis-de-la-virulencia-de-Pseudomonas-aeruginosa

Klevens M, Edwards J R, Richards Jr C L, Horan T C, Gaynes R P, Pollock D A, & Cardo D M. (2007). Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002. Public Health Reports, 122(2), 160–166. https://doi.org/10.1177/003335490712200205

Kojima, S., & Nikaido, H. (2013). Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proceedings of the National Academy of Sciences of the United States of America, 110(28). https://doi.org/10.1073/pnas.1310333110

Kramer, A., Schwebke, I., & Kampf, G. (2006). How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. In BMC Infectious Diseases (Vol. 6). https://doi.org/10.1186/1471-2334-6-130

Lamas Ferreiro, J. L., Álvarez Otero, J., González González, L., Novoa Lamazares, L., Arca Blanco, A., Bermúdez Sanjurjo, J. R., Rodríguez Conde, I., Fernández Soneira, M., & de La Fuente Aguado, J. (2017). Pseudomonas aeruginosa urinary tract infections in hospitalized patients: Mortality and prognostic factors. PLoS ONE, 12(5). https://doi.org/10.1371/journal.pone.0178178
Lemiech-Mirowska, E., Kiersnowska, Z. M., Michałkiewicz, M., Depta, A., & Marczak, M. (2021).

Nosocomial infections as one of the most importantproblems of the healthcare system. Annals of Agricultural and Environmental Medicine, 28(3), 361–366. https://doi.org/10.26444/aaem/122629

Lin YC, Chen T L, Ju H L, Chen H S, Wang F D, Yu K W, & Liu C Y. (2006). Clinical characteristics and risk factors for attributable mortality in Enterobacter cloacae bacteremia. Journal of Microbiology, Immunology, and Infection, 39(1), 67–72. https://europepmc.org/article/MED/16440126

Miranda, M., & Navarrete, L. (2008). Semmelweis y su aporte científico a la medicina: Un lavado de manos salva vidas. Revista Chilena de Infectología, 25(1), 54–57. www.sochinf.cl

N/A. (n.d.). Acinetobacter baumannii. Wikimedia Commons. Retrieved August 6, 2022, from https://commons.wikimedia.org/wiki/File:Acinetobacter_baumannii.JPG

Nodarse Hernández, R. (2002). VISIÓN ACTUALIZADA DE LAS INFECCIONES INTRAHOSPITALARIAS. Rev Cubana Med Milit, 31(3), 201–209. http://scielo.sld.cu/scielo.php?pid=S0138-65572002000300008&script=sci_arttext&tlng=en

O´Neil, J. (2016). Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf

O’Driscoll, T., & Crank, C. W. (2015). Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infection and Drug Resistance, 8, 217–230. https://doi.org/10.2147/IDR.S54125

Organización Mundial de la Salud, Jasarevic T, & Garwood P. (2017, September 18). Organización Mundial de la Salud (sitio web mundial). La OMS Publica Una Nueva Edición Del Informe Sobre El Seguimiento de Los Progresos En Relación Con Las Enfermedades No Transmisibles. https://www.who.int/es/news/item/18-09-2017-who-launches-new-ncds-progress-monitor

Organización Mundial de la Salud (OMS). (2010). Vigilancia epidemiológica de las infecciones asociadas a la atención en salud.

Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 37(1), 177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013
Pappas, G., Kiriaze, I. J., & Falagas, M. E. (2008). Insights into infectious disease in the era of Hippocrates. International Journal of Infectious Diseases, 12(4), 347–350. https://doi.org/10.1016/j.ijid.2007.11.003

Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-Infective Therapy, 11(3), 297–308. https://doi.org/10.1586/eri.13.12

Poirel, L., Revathi, G., Bernabeu, S., & Nordmann, P. (2011). Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrobial Agents and Chemotherapy, 55(2), 934–936. https://doi.org/10.1128/AAC.01247-10

Pujol, M., & Limón, E. (2013). Epidemiología general de las infecciones nosocomiales. Sistemas y programas de vigilancia. Enfermedades Infecciosas y Microbiologia Clinica, 31(2), 108–113. https://doi.org/10.1016/j.eimc.2013.01.001

Science History Images. (n.d.). Klebsiella pneumoniae. Klebsiella Pneumoniae. Retrieved August 6, 2022, from https://www.alamy.es/foto-mdr-patogeno-klebsiella-pneumoniae-sem-135022403.html?imageid=D725AD3B-E827-4DE3-97A7-3F12EA0CA529&p=52089&pn=1&searchId=437d870a2806a15213f29202f8c91422&searchtype=0

Secretaria de Salud. (2009). NOM-045-SSA2-2005, Para la vigilancia epidemiológica, prevención y control de las infecciones nosocomiales. https://www.pediatria.gob.mx/archivos/burbuja/13.1_NOM-045-SSA2-2005.pdf

Selwyn, S. (1991). Hospital infection: the first 2500 years. Journal of Hospital Infection, 18, 5–64. https://doi.org/10.1016/0195-6701(91)90004-R

Smith, C. A., & Baker, E. N. (2002). Aminoglycoside Antibiotic Resistance by Enzymatic Deactivation. Current Drug Targets-Infectious Disorders, 2, 143–160. https://doi.org/10.2174/1568005023342533

Thom, R. (1961). Hungarian physician Ignaz Semmelweis ensuring doctors and medical students wash their hands before examining obstetric patients at Vienna General Hospital, Austria, 1847 (colour litho). Bridgeman Images. https://www.bridgemanimages.com/en-US/thom/hungarian-physician-ignaz-semmelweis-ensuring-doctors-and-medical-students-wash-their-hands-before/colour-lithograph/asset/5999040

van Hal, S. J., Jensen, S. O., Vaska, V. L., Espedido, B. A., Paterson, D. L., & Gosbell, I. B. (2012). Predictors of mortality in staphylococcus aureus bacteremia. In Clinical Microbiology Reviews (Vol. 25, Issue 2, pp. 362–386). https://doi.org/10.1128/CMR.05022-11

Viale, P., Giannella, M., Tedeschi, S., & Lewis, R. (2015). Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. In Current Opinion in Pharmacology (Vol. 24, pp. 30–37). Elsevier Ltd. https://doi.org/10.1016/j.coph.2015.07.001

Wang H J, Shi H, Zhou W, Hu Z Q, Mu L Y, Su M, & Jiang Y M. (2012). Common pathogens and clinical characteristics of neonatal pneumonia. Chin J Contemp Pediatr, 14(12), 898–902. https://pubmed.ncbi.nlm.nih.gov/23234773/

Willyard C. (2017). Drug-resistant bacteria ranked. Nature, 543(7643), 15. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.nature.com/articles/nature.2017.21550.pdf?origin=ppub

Wright, G. D. (2012). The origins of antibiotic resistance. Handbook of Experimental Pharmacology, 211, 13–30. https://doi.org/10.1007/978-3-642-28951-4_2

Xie, R., Zhang, X. D., Zhao, Q., Peng, B., & Zheng, J. (2018). Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerging Microbes and Infections, 7(1). https://doi.org/10.1038/s41426-018-0038-9

Yayan, J., Ghebremedhin, B., & Rasche, K. (2015). Antibiotic resistance of pseudomonas aeruginosa in pneumonia at a single university hospital center in Germany over a 10-Year Period. PLoS ONE, 10(10). https://doi.org/10.1371/journal.pone.0139836

Zendejas-Manzo G. S, Avalos-Flores H, & Soto-Padilla M. Y. (2014). Microbiología general de Staphylococcus aureus Generalidades , patogenicidad y métodos de identificación. Revista Biomédica, 25, 129–143. https://doi.org/https://doi.org/10.32776/revbiomed.v25i3.42

Zowawi, H. M., Forde, B. M., Alfaresi, M., Alzarouni, A., Farahat, Y., Chong, T. M., Yin, W. F., Chan, K. G., Li, J., Schembri, M. A., Beatson, S. A., & Paterson, D. L. (2015). Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae. Scientific Reports, 5. https://doi.org/10.1038/srep15082