Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Año 9 No.25 Enero - Abril 2023

LAS BACTERIAS TAMBIÉN SON ÚTILES. ¿QUÉ ES UNA CELDA DE COMBUSTIBLE MICROBIANA?

DOI
https://doi.org/10.32399/icuap.rdic.2448-5829.2023.25.1048
Enviado
febrero 13, 2023
Publicado
marzo 2, 2023

Resumen

Las bacterias son microorganismos que habitan en todos los ecosistemas del planeta y las encontramos con tres morfologías, las circulares que son llamadas cocos, las alargadas como bastones llamadas bacilos y las espirales llamadas espiroquetas.  Aunque algunas de ellas pueden ser perjudiciales para los seres humanos, provocándo enfermedades (bacterias patogénicas), también hay bacterias “buenas” que ayudan a los seres humanos y aunque parezca increíble, existen muchas bacterias de éste tipo. En el presente artículo, hablaremos de una tecnología ecológica que se apoya en un tipo de bacterias llamadas electrogénicas, donde se aprovecha el proceso de respiración de estas bacterias cuando descomponen la materia orgánica contenida en el agua residual producida por los humanos y se obtiene, de forma simultánea, energía eléctrica. Esta eco-tecnología se denomina Celda de Combustible Microbiana, y aunque fue estudiada por primera vez en 1911, sigue ofreciendo un amplio campo para el desarrollo de la investigación científica, ya que el desarrollo de una tecnología que logre el tratamiento del agua residual, y con ello la obtención de energía, se considera imperativo en el camino del desarrollo hacia una sociedad responsable con el medio ambiente.

 

 

Citas

Abdallah, M., Feroz, S., Alani, S., Sayed, E. T., & Shanableh, A. (2019). Continuous and scalable applications of microbial fuel cells: a critical review. In Reviews in Environmental Science and Biotechnology (Vol. 18, Issue 3). Springer Netherlands. https://doi.org/10.1007/s11157-019-09508-x
Bermudes, M., & Bernal, E. (2018). Implementación de una celda de combustible microbiana a escala laboratorio para generación de energía eléctrica. Fundación Universidad de America.
Ccora, B. (2019). Generación de Energía Eléctrica y Tratamiento de Aguas Residuales Municipales Utilizando Celdas De Combustible Microbiano (MfFC) en la Ciudad de Huancavelica” [Universidad Nacional de Huancavelica]. In Repositorio Institucional - UNH. http://repositorio.unh.edu.pe/handle/UNH/2877
Cornejo, A. (2017). Estudio del microbioma presente en celdas de combustible microbianas. Centro de investigación y desarrollo tecnológico en electroquímica, S.C.
Corrales, L. C., Antolinez Romero, D. M., Bohórquez Macías, J. A., & Corredor Vargas, A. M. (2015). Bacterias anaerobias: procesos que realizan y contribuyen a la sostenibilidad de la vida en el planeta. Nova, 13(24), 55. https://doi.org/10.22490/24629448.1717
Do, M. H., Ngo, H. H., Guo, W. S., Liu, Y., Chang, S. W., Nguyen, D. D., Nghiem, L. D., & Ni, B. J. (2018). Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Science of the Total Environment, 639, 910–920. https://doi.org/10.1016/j.scitotenv.2018.05.136
Esteve-Núñez, A. (2008). Bacterias productoras de electricidad. Del subsuelo a la pila de combustible. Temas de Actualidad, 45, 34–39. www.genomatica.com
Flimban, S., Hassan, S., Rahman, M., & Oh, S. (2020). The effect of Nafion membrane fouling on the power generation of a microbial fuel cell. International Journal of Hydrogen Energy, 45(25), 13643–13651. https://doi.org/10.1016/j.ijhydene.2018.02.097
Franks, A. E., & Nevin, K. P. (2010). Microbial fuel cells, a current review. Energies, 3(5), 899–919. https://doi.org/10.3390/en3050899
Gajda, I., Obata, O., Salar-Garcia, M., Greenman, J., & Ieropoulos, I. (2020). Long-term bio-power of ceramic microbial fuel cell in individual and stacked configurations. Bioelectrochemistry. https://doi.org/https://doi.org/10.1016/j.bioelechem.2020.107459
Gajda, I., Stinchcombe, A., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Ceramic MFCs with internal cathode producing sufficient power for practical applications. International Journal of Hydrogen Energy, 40(42), 14627–14631. https://doi.org/10.1016/j.ijhydene.2015.06.039
Gonzalez, A. (2015). Araceli González del Campo García-Villarrubia. Universidad de Castilla-La Mancha.
Gretel, N., Bacame-Valenzuela, J., Pérez, J., Espejel, F., & Reyes-Vidal, Y. (2019). Las aguas residuales como alternativa para la producción de energía usando sistemas bioelectroquímicos. Revista Latinoamericana El Ambiente y Las Ciencias, 1(1), 22–44. http://jurnalmahasiswa.stiesia.ac.id/index.php/jira/article/download/200/204%0Ahttps://www.oecd.org/dac/accountable-effective-institutions/Governance Notebook 2.6 Smoke.pdf%0Ahttp://www.wiley.com/go/permissions%0Ahttp://journal.feb.unmul.ac.id
Gul, H., Raza, W., Lee, J., Azam, M., Ashraf, M., & Kim, K. H. (2021). Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere, 281(May), 130828. https://doi.org/10.1016/j.chemosphere.2021.130828
Jadhav, D. A., Mungray, A. K., Arkatkar, A., & Kumar, S. S. (2021). Recent advancement in scaling-up applications of microbial fuel cells: From reality to practicability. Sustainable Energy Technologies and Assessments, 45(March), 101226. https://doi.org/10.1016/j.seta.2021.101226
Kumar, R., Singh, L., & Zularisam, A. (2016). Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56, 1322–1336. https://doi.org/10.1016/j.rser.2015.12.029
Lawson, K., Rossi, R., Regan, J. M., & Logan, B. E. (2020). Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Bioresource Technology, 316(July), 123919. https://doi.org/10.1016/j.biortech.2020.123919
Lumba, N., & Porras, L. (2020). Generación de bioelectricidad a partir de agua residual doméstica por el método celdas de combustible microbiano (CCM): Una Revisión [Universidad Peruana Unión]. In Facultad De Ingenieria Y Arquitectura (Issue Ccm). http://repositorio.upeu.edu.pe/bitstream/handle/UPEU/523/Shirley_Tesis_bachiller_2017.pdf;jsessionid=A9EF38A91D92BA965849348B5FC028B4?sequence=1
NIH. (2022). Bacteria. National Human Genome Research Institute. https://www.genome.gov/es/genetics-glossary/Bacteria
Ore, F., & Pompa, E. (2020). Escuela Profesional de Ingeniería Electrónica Escuela Profesional de Ingeniería Electrónica. Universidad Peruana Unión.
Pandit, S., Savla, N., & Jung, and S. (2021). Large-scale MFC: potentials and challenges. Integrated Microbial Fuel Cells for Wastewater Treatment. https://doi.org/https://doi.org/10.1016/B978-0-12-817493-7.00016-3
Pandit, S., Savla, N., & Jung, S. P. (2020). Recent advancements in scaling up microbial fuel cells. In Integrated Microbial Fuel Cells for Wastewater Treatment. INC. https://doi.org/10.1016/b978-0-12-817493-7.00016-3
Patil, H. (2022). Geobacter sulfurreducens. Alchetron. https://alchetron.com/Geobacter-sulfurreducens
Patil, N. (2022). Shewanella. Alchetron. https://alchetron.com/Shewanella
Romero, M. (2018). Determinación de la función de transferencia de una celda de combustible microbiana. Universidad Nacional del Comahue.
Sánchez, M., Fernández, L., & Espinoza-Montero, P. (2021). Generación de energía eléctrica y tratamiento de aguas residuales mediante celdas de combustible microbianas. Novasinergia Revista Digital De Ciencia, Ingeniería Y Tecnología, 4(1), 164–180. https://doi.org/10.37135/ns.01.07.10
Siddiqui, S., Bhatnagar, P., Dhingra, S., Upadhyay, U., & Sreedhar, I. (2021). Wastewater treatment and energy production by microbial fuel cells. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01411-2
Sinche, M., & Velasquez, A. (2020). Revision bibliografica de la generacion de electricidad mediante la aplicacion de bacterias electrogenicas. Universidad César Vallejo.
Song, R. Bin, Zhou, S., Guo, D., Li, P., Jiang, L. P., Zhang, J. R., Wu, X., & Zhu, J. J. (2020). Core/Satellite Structured Fe3O4/Au Nanocomposites Incorporated with Three-Dimensional Macroporous Graphene Foam as a High-Performance Anode for Microbial Fuel Cells. ACS Sustainable Chemistry and Engineering, 8(2), 1311–1318. https://doi.org/10.1021/acssuschemeng.9b07059
Sravan, J., Tharak, A., Modestra, J., Chang, I., & Mohan, S. (2021). Emerging trends in microbial fuel cell diversification-Critical analysis. Bioresource Technology, 326(January), 124676. https://doi.org/10.1016/j.biortech.2021.124676
Tabassum, N., Islam, N., & Ahmed, S. (2021). Progress in microbial fuel cells for sustainable management of industrial effluents. Process Biochemistry, 106(March), 20–41. https://doi.org/10.1016/j.procbio.2021.03.032
Tan, W. H., Chong, S., Fang, H. W., Pan, K. L., Mohamad, M., Lim, J. W., Tiong, T. J., Chan, Y. J., Huang, C. M., & Yang, T. C. K. (2021). Microbial fuel cell technology—a critical review on scale-up issues. Processes, 9(6), 1–13. https://doi.org/10.3390/pr9060985
Vishwanathan, A. S. (2021). Microbial fuel cells: a comprehensive review for beginners. 3 Biotech, 11(5), 1–14. https://doi.org/10.1007/s13205-021-02802-y
Yang, Y., Wang, Z., Gan, C., Klausen, L. H., Bonné, R., Kong, G., Luo, D., Meert, M., Zhu, C., Sun, G., Guo, J., Ma, Y., Bjerg, J. T., Manca, J., Xu, M., Nielsen, L. P., & Dong, M. (2021). Long-distance electron transfer in a filamentous Gram-positive bacterium. Nature Communications, 12(1), 4–12. https://doi.org/10.1038/s41467-021-21709-z
Yaqoob, A. A., Ibrahim, M. N. M., & Guerrero-Barajas, C. (2021). Modern trend of anodes in microbial fuel cells (MFCs): An overview. Environmental Technology and Innovation, 23, 101579. https://doi.org/10.1016/j.eti.2021.101579
Yousefi, V., Mohebbi-Kalhori, D., & Samimi, A. (2017). Ceramic-based microbial fuel cells (MFCs): A review. International Journal of Hydrogen Energy, 42(3), 1672–1690. https://doi.org/10.1016/j.ijhydene.2016.06.054